1887

Abstract

Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus , with as most closely related formally named species; this relationship was confirmed through comparative sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus . sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100 % similarity) and (99.1–99.7 %) gene sequences. The results of DNA–DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name sp. nov. is proposed, with strain MMP81 ( = LMG 27620 = CCUG 64368) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059667-0
2014-06-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2003.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059667-0&mimeType=html&fmt=ahah

References

  1. Burbage D. A., Sasser M., Lumsden R. D.. ( 1982;). A medium selective for Pseudomonas cepacia. . Phytopathology 72:, 706.
    [Google Scholar]
  2. Coenye T., Vandamme P.. ( 2003;). Diversity and significance of Burkholderia species occupying diverse ecological niches. . Environ Microbiol 5:, 719–729. [CrossRef][PubMed]
    [Google Scholar]
  3. Compant S., Nowak J., Coenye T., Clément C., Ait Barka E.. ( 2008;). Diversity and occurrence of Burkholderia spp. in the natural environment. . FEMS Microbiol Rev 32:, 607–626. [CrossRef][PubMed]
    [Google Scholar]
  4. De Meyer S. E., Cnockaert M., Ardley J. K., Trengove R. D., Garau G., Howieson J. G., Vandamme P.. ( 2013;). Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. . Int J Syst Evol Microbiol 63:, 3944–3949. [CrossRef][PubMed]
    [Google Scholar]
  5. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Figuerola E. L., Guerrero L. D., Rosa S. M., Simonetti L., Duval M. E., Galantini J. A., Bedano J. C., Wall L. G., Erijman L.. ( 2012;). Bacterial indicator of agricultural management for soil under no-till crop production. . PLoS ONE 7:, e51075. [CrossRef][PubMed]
    [Google Scholar]
  8. Galyov E. E., Brett P. J., DeShazer D.. ( 2010;). Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. . Annu Rev Microbiol 64:, 495–517. [CrossRef][PubMed]
    [Google Scholar]
  9. Gillis M., Van Van T., Bardin R., Goor M., Hebbar P., Willems A., Segers P., Kersters K., Heulin T., Fernandez M. P.. ( 1995;). Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. . Int J Syst Bacteriol 45:, 274–289. [CrossRef]
    [Google Scholar]
  10. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  11. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W. M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. Jr. & other authors ( 2011;). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. . Mol Plant Microbe Interact 24:, 1276–1288. [CrossRef][PubMed]
    [Google Scholar]
  12. Hasegawa M., Kishino H., Yano T.. ( 1985;). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. . J Mol Evol 22:, 160–174. [CrossRef][PubMed]
    [Google Scholar]
  13. Jeffries C. D., Holtman D. F., Guse D. G.. ( 1957;). Rapid method for determining the activity of microorganisms on nucleic acids. . J Bacteriol 73:, 590–591.[PubMed]
    [Google Scholar]
  14. Kikuchi Y., Meng X. Y., Fukatsu T.. ( 2005;). Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). . Appl Environ Microbiol 71:, 4035–4043. [CrossRef][PubMed]
    [Google Scholar]
  15. Levy A., Chang B. J., Abbott L. K., Kuo J., Harnett G., Inglis T. J.. ( 2003;). Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp.. Appl Environ Microbiol 69:, 6250–6256. [CrossRef][PubMed]
    [Google Scholar]
  16. Lim J. S., Choi B. S., Choi A. Y., Kim K. D., Kim D. I., Choi I. Y., Ka J. O.. ( 2012;). Complete genome sequence of the fenitrothion-degrading Burkholderia sp. strain YI23. . J Bacteriol 194:, 896. [CrossRef][PubMed]
    [Google Scholar]
  17. Mahenthiralingam E., Baldwin A., Dowson C. G.. ( 2008;). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. . J Appl Microbiol 104:, 1539–1551. [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  19. Niemann S., Pühler A., Tichy H. V., Simon R., Selbitschka W.. ( 1997;). Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. . J Appl Microbiol 82:, 477–484. [CrossRef][PubMed]
    [Google Scholar]
  20. Pallud C., Viallard V., Balandreau J., Normand P., Grundmann G.. ( 2001;). Combined use of a specific probe and PCAT medium to study Burkholderia in soil. . J Microbiol Methods 47:, 25–34. [CrossRef][PubMed]
    [Google Scholar]
  21. Parke J. L., Gurian-Sherman D.. ( 2001;). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. . Annu Rev Phytopathol 39:, 225–258. [CrossRef][PubMed]
    [Google Scholar]
  22. Peeters C., Zlosnik J. E. A., Spilker T., Hird T. J., LiPuma J. J., Vandamme P.. ( 2013;). Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. . Syst Appl Microbiol 36:, 483–489. [CrossRef][PubMed]
    [Google Scholar]
  23. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  24. Salles J. F., van Elsas J. D., van Veen J. A.. ( 2006a;). Effect of agricultural management regime on Burkholderia community structure in soil. . Microb Ecol 52:, 267–279. [CrossRef][PubMed]
    [Google Scholar]
  25. Salles J. F., Samyn E., Vandamme P., van Veen J. A., van Elsas J. D.. ( 2006b;). Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium. . Soil Biol Biochem 38:, 661–673. [CrossRef]
    [Google Scholar]
  26. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H.. & other authors ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef][PubMed]
    [Google Scholar]
  27. Sierra G.. ( 1957;). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23:, 15–22. [CrossRef][PubMed]
    [Google Scholar]
  28. Spilker T., Baldwin A., Bumford A., Dowson C. G., Mahenthiralingam E., LiPuma J. J.. ( 2009;). Expanded multilocus sequence typing for Burkholderia species. . J Clin Microbiol 47:, 2607–2610. [CrossRef][PubMed]
    [Google Scholar]
  29. Suárez-Moreno Z. R., Caballero-Mellado J., Coutinho B. G., Mendonça-Previato L., James E. K., Venturi V.. ( 2012;). Common features of environmental and potentially beneficial plant-associated Burkholderia. . Microb Ecol 63:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K.. ( 1992;). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. . Mol Biol Evol 9:, 678–687.[PubMed]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Tian Y., Kong B. H., Liu S. L., Li C. L., Yu R., Liu L., Li Y. H.. ( 2013;). Burkholderia grimmiae sp. nov., isolated from a xerophilous moss (Grimmia montana). . Int J Syst Evol Microbiol 63:, 2108–2113. [CrossRef][PubMed]
    [Google Scholar]
  33. Vandamme P., Dawyndt P.. ( 2011;). Classification and identification of the Burkholderia cepacia complex: past, present and future. . Syst Appl Microbiol 34:, 87–95. [CrossRef][PubMed]
    [Google Scholar]
  34. Vandamme P., De Brandt E., Houf K., Salles J. F., van Elsas J. D., Spilker T., Lipuma J. J.. ( 2013;). Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. . Int J Syst Evol Microbiol 63:, 4707–4718. [CrossRef][PubMed]
    [Google Scholar]
  35. Verstraete B., Janssens S., Smets E., Dessein S.. ( 2013;). Symbiotic β-proteobacteria beyond legumes: Burkholderia in Rubiaceae. . PLoS ONE 8:, e55260. [CrossRef][PubMed]
    [Google Scholar]
  36. Vial L., Chapalain A., Groleau M. C., Déziel E.. ( 2011;). The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. . Environ Microbiol 13:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  37. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V.. ( 1990;). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. . Nucleic Acids Res 18:, 6531–6535. [CrossRef][PubMed]
    [Google Scholar]
  38. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M.. ( 1992;). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov.. Microbiol Immunol 36:, 1251–1275. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059667-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059667-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error