1887

Abstract

Two strains (JA746 and JA756) having yellowish brown-to-green pigment were isolated from a solar saltern and a pink pond, respectively. While both strains were non-motile and shared the presence of bacteriochlorophyll-, major cellular fatty acids (Cω7, C, C), quinone (Q-10), polar lipids and hopanoids, they differed from each other in their carotenoid composition. The G+C content of genomic DNA of strains JA746 and 756 was 62.4 and 63.3 mol%, respectively. The 16S rRNA gene-based EzTaxon-e search analysis of strains JA746 and 756 indicated highest sequence similarity with members of the genus in the family of the class . Strain JA746 has high sequence similarities with JA181 (97.3 %), A-20s (97.3 %), JA580 (97 %), MB-G2 (97 %) and other members of the genus (<97 %). Strain JA756 has high sequence similarities with JA181 (99.8 %), Hansen W4 (99.1 %), JA297 (97.9 %) and other members of the genus (<97 %). The sequence similarity between strains JA746 and JA756 was 97.5 %. However, these strains are not closely related to each other or to their phylogenetic neighbours since the DNA–DNA reassociation values were less than 56 %. The genomic information was also supported by phenotypic and chemotaxonomic results, leading us to classify strains JA746 ( = NBRC 108898 = KCTC 15180) and JA756 ( = NBRC 109122 = KCTC 15223) as the type strains of two novel species of the genus , for which the names sp. nov. and sp. nov. are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058974-0
2014-03-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/957.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058974-0&mimeType=html&fmt=ahah

References

  1. Chakravarthy S. K., Ramaprasad E. V. V., Shobha E., Sasikala Ch., Ramana Ch. V.. ( 2012;). Rhodoplanes piscinae sp. nov. isolated from pond water. . Int J Syst Evol Microbiol 62:, 2828–2834. [CrossRef][PubMed]
    [Google Scholar]
  2. Hiraishi A., Hoshino Y.. ( 1984;). Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. . J Gen Appl Microbiol 30:, 435–448. [CrossRef]
    [Google Scholar]
  3. Hiraishi A., Ueda Y.. ( 1995;). Isolation and characterization of Rhodovulum strictum sp. nov. and some other purple nonsulfur bacteria from colored blooms in tidal and seawater pools. . Int J Syst Bacteriol 45:, 319–326. [CrossRef][PubMed]
    [Google Scholar]
  4. Hiraishi A., Hoshino Y., Kitamura H.. ( 1984;). Isoprenoid quinone composition in the classification of Rhodospirillaceae. . J Gen Appl Microbiol 30:, 197–210. [CrossRef]
    [Google Scholar]
  5. Imhoff J. F.. ( 1984;). Quinones of phototrophic purple bacteria. . FEMS Microbiol Lett 25:, 85–89. [CrossRef]
    [Google Scholar]
  6. Imhoff J. F.. ( 1991;). Polar lipids and fatty acids in the genus Rhodobacter. . Syst Appl Microbiol 14:, 228–234. [CrossRef]
    [Google Scholar]
  7. Kates M.. ( 1972;). Techniques of Lipidology. New York:: Elsevier;.
    [Google Scholar]
  8. Kates M.. ( 1986;). Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids. Amsterdam:: Elsevier;.
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kompantseva E. I., Komova A. V., Kostrikina N. A.. ( 2010;). Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia. . Int J Syst Evol Microbiol 60:, 1210–1214. [CrossRef][PubMed]
    [Google Scholar]
  12. Lakshmi K. V. N. S., Sasikala Ch., Ramana Ch. V.. ( 2009;). Rhodoplanes pokkaliisoli sp. nov., a phototrophic alphaproteobacterium isolated from a waterlogged brackish paddy soil. . Int J Syst Evol Microbiol 59:, 2153–2157. [CrossRef][PubMed]
    [Google Scholar]
  13. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Oren A., Duker S., Ritter S.. ( 1996;). The polar lipid composition of Walsby’s square bacterium. . FEMS Microbiol Lett 138:, 135–140. [CrossRef]
    [Google Scholar]
  16. Rohmer M., Bouvier-Nave P., Ourisson G.. ( 1984;). Distribution of hopanoid triterpenes in prokaryotes. . J Gen Microbiol 130:, 1137–1150.
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  18. Soto C. Y., Cama M., Gibert I., Luquin M.. ( 2000;). Application of an easy and reliable method for sulfolipid-I detection in the study of its distribution in Mycobacterium tuberculosis strains. . FEMS Microbiol Lett 187:, 103–107. [CrossRef][PubMed]
    [Google Scholar]
  19. Srinivas T. N. R., Kumar P. A., Sasikala Ch., Ramana Ch. V.. ( 2007;). Rhodovulum imhoffii sp. nov.. Int J Syst Evol Microbiol 57:, 228–232. [CrossRef][PubMed]
    [Google Scholar]
  20. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 3:, 152–155.
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  22. Subhash Y., Sasikala Ch., Ramana Ch. V.. ( 2013a;). Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. . Int J Syst Evol Microbiol 63:, 3463–3469. [CrossRef][PubMed]
    [Google Scholar]
  23. Subhash Y., Tushar L., Sasikala Ch., Ramana ChV.. ( 2013b;). Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. . Int J Syst Evol Microbiol 63:, 4524–4532. [CrossRef][PubMed]
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  26. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  27. Trüper H. G., Pfennig N.. ( 1981;). Isolation of members of the families Chromatiaceae and Chlorobiaceae. . In The Prokaryotes, pp. 279–289. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G... Berlin:: Springer;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058974-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058974-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error