1887

Abstract

Pectinolytic Gram-negative bacteria were isolated from different waterways in the UK and Finland. Three strains (174/2, 181/2 and Dw054) had the same 16S rRNA gene sequences which shared 99 % sequence similarity to species of the genus , and a phylogeny of related genera confirmed attribution to this genus. Fatty acid profile analysis of all three strains found a high proportion of Cω7/Cω7 and C fatty acids, and library profile searches found closest matches to . Production of a concatenated phylogeny using six loci, , , , , and , provided a high-resolution phylogeny which placed strains 174/2 and 181/2 as a distinct clade, separated from the other species of the genus by a relatively long branch-length. DNA–DNA hybridization analysis with a limited number of reference species also supported the distinctiveness of strains 174/2 and 181/2 within the genus . All three strains could be phenotypically distinguished from other species of the genus by fermentation of melibiose and raffinose but not -arabinose or mannitol. The name sp. nov. is proposed for the new taxon; the type strain is 174/2 ( = NCPPB 4580 = LMG 27354).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058693-0
2014-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2264.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058693-0&mimeType=html&fmt=ahah

References

  1. Brady C. L., Cleenwerck I., Denman S., Venter S. N., Rodríguez-Palenzuela P., Coutinho T. A., De Vos P.. ( 2012;). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. . Int J Syst Evol Microbiol 62:, 1592–1602. [CrossRef][PubMed]
    [Google Scholar]
  2. Brown E. W., Davis R. M., Gouk C., van der Zwet T.. ( 2000;). Phylogenetic relationships of necrogenic Erwinia and Brenneria species as revealed by glyceraldehyde-3-phosphate dehydrogenase gene sequences. . Int J Syst Evol Microbiol 50:, 2057–2068. [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol 39:, 224–229.
    [Google Scholar]
  4. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  5. Janse J. D., Ruissen M. A.. ( 1988;). Characterization and classification of Erwinia chrysanthemi strains from several hosts in The Netherlands. . Phytopathology 78:, 800–808. [CrossRef]
    [Google Scholar]
  6. Laurila J., Ahola V., Lehtinen A., Joutsjoki T., Hannukkala A., Rahkonen A., Pirhonen M.. ( 2008;). Characterization of Dickeya strains isolated from potato and river water samples in Finland. . Eur J Plant Pathol 122:, 213–225. [CrossRef]
    [Google Scholar]
  7. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  8. Nassar A., Darrasse A., Lemattre M., Kotoujansky A., Dervin C., Vedel R., Bertheau Y.. ( 1996;). Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. . Appl Environ Microbiol 62:, 2228–2235.[PubMed]
    [Google Scholar]
  9. Nhung P. H., Ohkusu K., Mishima N., Noda M., Monir Shah M., Sun X., Hayashi M., Ezaki T.. ( 2007;). Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. . Diagn Microbiol Infect Dis 58:, 153–161. [CrossRef][PubMed]
    [Google Scholar]
  10. Parkinson N., Stead D., Bew J., Heeney J., Tsror (Lahkim) L., Elphinstone J.. ( 2009;). Dickeya species relatedness and clade structure determined by comparison of recA sequences. . Int J Syst Evol Microbiol 59:, 2388–2393. [CrossRef][PubMed]
    [Google Scholar]
  11. Samson R., Legendre J. B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L.. ( 2005;). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.. Int J Syst Evol Microbiol 55:, 1415–1427. [CrossRef][PubMed]
    [Google Scholar]
  12. Slawiak M., van Beckhoven J. R. C. M., Speksnijder A. G. C. L., Czajkowski R., Grabe G., van der Wolf J. M.. ( 2009;). Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. . Eur J Plant Pathol 125:, 245–261. [CrossRef]
    [Google Scholar]
  13. Stead D. E., Sellwood J. E., Wilson J., Viney I.. ( 1992;). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. . J Appl Microbiol 72:, 315–321. [CrossRef]
    [Google Scholar]
  14. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  15. van der Wolf J. M., Nijhuis E. H., Kowalewska M. J., Saddler G. S., Parkinson N., Elphinstone J. G., Pritchard L., Toth I. K., Lojkowska E.. & other authors ( 2014;). Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). . Int J Syst Evol Microbiol 64:, 768–774. [CrossRef][PubMed]
    [Google Scholar]
  16. Weller S. A., Aspin A., Stead D. E.. ( 2000;). Classification and identification of plant-associated bacteria by fatty acid profiling. . EPPO Bulletin 30:, 375–380. [CrossRef]
    [Google Scholar]
  17. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058693-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058693-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error