1887

Abstract

A novel methane-oxidizing bacterium, strain IT-9, was isolated from a shallow submarine hydrothermal system occurring in a coral reef in Japan. Strain IT-9 was a Gram-negative, aerobic, motile, coccoid or oval-shaped bacterium with the distinctive intracytoplasmic membrane arrangement of a type I methanotroph. Strain IT-9 was a moderately thermophilic, obligate methanotroph that grew on methane and methanol at 30–55 °C (optimum 45–50 °C). The strain possessed the particulate methane monooxygenase (pMMO). The ribulose monophosphate pathway was operative for carbon assimilation. NaCl was required for growth within a concentration range of 1–5 % (optimum 3 %). The gene encoding hydroxylamine oxidoreductase (HAO) involved in nitrification was detected by a PCR experiment. The major phospholipid fatty acids were C and Cω7. The major isoprenoid quinone was Q-8. The DNA G+C content was 66.0 mol%. The 16S rRNA gene sequence of strain IT-9 was only moderately related to the sequences of members of the closest genera (94.1 % similarity) and (91.7–91.9 % similarity); however, those sequences formed a deeply branching monophyletic group within the order . Phylogenies based on 16S rRNA gene sequences, deduced partial PmoA sequences and deduced partial Hao sequences and physiological and chemotaxonomic characteristics revealed that strain IT-9 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is IT-9 ( = JCM 13666 = DSM 19749). In addition, we propose a new family, fam. nov., in the order , to accommodate the genera , and . The genera and have been recognized as being distinct from other genera in the methane-oxidizing order in the class . These genera form a distinctive monophyletic lineage within the order on the basis of 16S rRNA gene sequence phylogeny. This seems consistent with their distinctive physiological traits; the genus includes the most thermophilic species, and the genus includes the most halophilic species, within the order. Although these two genera include only three species at the time of writing, similar sequences of 16S rRNA genes and genes encoding pMMO have been detected in a geothermal area or deep-sea hydrothermal vent fields by studies using culture-independent techniques. This suggests that unknown methanotrophs of this lineage inhabit various extreme environments.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058172-0
2014-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/989.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058172-0&mimeType=html&fmt=ahah

References

  1. Alfreider A., Vogt C., Hoffmann D., Babel W.. ( 2003;). Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. . Microb Ecol 45:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  2. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E.. ( 2000;). Molecular characterization of methanotrophic isolates from freshwater lake sediment. . Appl Environ Microbiol 66:, 5259–5266. [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  4. Bergmann D. J., Hooper A. B., Klotz M. G.. ( 2005;). Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history. . Appl Environ Microbiol 71:, 5371–5382. [CrossRef][PubMed]
    [Google Scholar]
  5. Bodrossy L., Holmes E. M., Holmes A. J., Kovács K. L., Murrell J. C.. ( 1997;). Analysis of 16S rRNA and methane monooxygenase gene sequences reveals a novel group of thermotolerant and thermophilic methanotrophs, Methylocaldum gen. nov.. Arch Microbiol 168:, 493–503. [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C.. ( 1993;). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  7. Bowman J. P., Sly L. I., Stackebrandt E.. ( 1995;). The phylogenetic position of the family Methylococcaceae. . Int J Syst Bacteriol 45:, 182–185. [CrossRef][PubMed]
    [Google Scholar]
  8. Campbell M. A., Nyerges G., Kozlowski J. A., Poret-Peterson A. T., Stein L. Y., Klotz M. G.. ( 2011;). Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. . FEMS Microbiol Lett 322:, 82–89. [CrossRef][PubMed]
    [Google Scholar]
  9. Christie W. W.. ( 1997;). Structural analysis of fatty acids. . In Advances in Lipid Methodology, pp. 119–169. Edited by Christie W. W... Dundee:: Oily Press;. [CrossRef]
    [Google Scholar]
  10. Collins M. D., Green P. N.. ( 1985;). Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. . Biochem Biophys Res Commun 133:, 1125–1131. [CrossRef][PubMed]
    [Google Scholar]
  11. Csáki R., Bodrossy L., Klem J., Murrell J. C., Kovács K. L.. ( 2003;). Genes involved in the copper-dependent regulation of soluble methane monooxygenase of Methylococcus capsulatus (Bath): cloning, sequencing and mutational analysis. . Microbiology 149:, 1785–1795. [CrossRef][PubMed]
    [Google Scholar]
  12. Elsaied H., Naganuma T.. ( 2001;). Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. . Appl Environ Microbiol 67:, 1751–1765. [CrossRef][PubMed]
    [Google Scholar]
  13. Eshinimaev B. Ts., Medvedkova K. A., Khmelenina V. N., Suzina N. E., Osipov G. A., Lysenko A. M., Trotsenko Iu. A.. ( 2004;). [New thermophilic methanotrophs of the genus Methylocaldum]. . Mikrobiologiia 73:, 530–539 (in Russian).[PubMed]
    [Google Scholar]
  14. Fang J., Barcelona M. J., Semrau J. D.. ( 2000;). Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. . FEMS Microbiol Lett 189:, 67–72. [CrossRef][PubMed]
    [Google Scholar]
  15. Gascuel O.. ( 1997;). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. . Mol Biol Evol 14:, 685–695. [CrossRef][PubMed]
    [Google Scholar]
  16. Geymonat E., Ferrando L., Tarlera S. E.. ( 2011;). Methylogaea oryzae gen. nov., sp. nov., a mesophilic methanotroph isolated from a rice paddy field. . Int J Syst Evol Microbiol 61:, 2568–2572. [CrossRef][PubMed]
    [Google Scholar]
  17. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  18. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  19. Heyer J., Berger U., Hardt M., Dunfield P. F.. ( 2005;). Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. . Int J Syst Evol Microbiol 55:, 1817–1826. [CrossRef][PubMed]
    [Google Scholar]
  20. Hirayama H., Takai K., Inagaki F., Nealson K. H., Horikoshi K.. ( 2005;). Thiobacter subterraneus gen. nov., sp. nov., an obligately chemolithoautotrophic, thermophilic, sulfur-oxidizing bacterium from a subsurface hot aquifer. . Int J Syst Evol Microbiol 55:, 467–472. [CrossRef][PubMed]
    [Google Scholar]
  21. Hirayama H., Sunamura M., Takai K., Nunoura T., Noguchi T., Oida H., Furushima Y., Yamamoto H., Oomori T., Horikoshi K.. ( 2007;). Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan. . Appl Environ Microbiol 73:, 7642–7656. [CrossRef][PubMed]
    [Google Scholar]
  22. Hirayama H., Suzuki Y., Abe M., Miyazaki M., Makita H., Inagaki F., Uematsu K., Takai K.. ( 2011;). Methylothermus subterraneus sp. nov., a moderately thermophilic methanotroph isolated from a terrestrial subsurface hot aquifer. . Int J Syst Evol Microbiol 61:, 2646–2653. [CrossRef][PubMed]
    [Google Scholar]
  23. Hirayama H., Fuse H., Abe M., Miyazaki M., Nakamura T., Nunoura T., Furushima Y., Yamamoto H., Takai K.. ( 2013;). Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. . Int J Syst Evol Microbiol 63:, 1073–1082. [CrossRef][PubMed]
    [Google Scholar]
  24. Hutchens E., Radajewski S., Dumont M. G., McDonald I. R., Murrell J. C.. ( 2004;). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  25. Iguchi H., Yurimoto H., Sakai Y.. ( 2011;). Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. . Int J Syst Evol Microbiol 61:, 810–815. [CrossRef][PubMed]
    [Google Scholar]
  26. Kalyuzhnaya M. G., Khmelenina V., Eshinimaev B., Sorokin D., Fuse H., Lidstrom M., Trotsenko Y.. ( 2008;). Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. . Int J Syst Evol Microbiol 58:, 591–596. [CrossRef][PubMed]
    [Google Scholar]
  27. Komagata K., Suzuki K.. ( 1988;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  28. Large P. J., Quayle J. R.. ( 1963;). Microbial growth on C1 compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. . Biochem J 87:, 386–396.[PubMed]
    [Google Scholar]
  29. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  30. Maeda N., Kanai T., Atomi H., Imanaka T.. ( 2002;). The unique pentagonal structure of an archaeal Rubisco is essential for its high thermostability. . J Biol Chem 277:, 31656–31662. [CrossRef][PubMed]
    [Google Scholar]
  31. Mehta M. P., Butterfield D. A., Baross J. A.. ( 2003;). Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. . Appl Environ Microbiol 69:, 960–970. [CrossRef][PubMed]
    [Google Scholar]
  32. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  33. Nanba K., King G. M., Dunfield K.. ( 2004;). Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. . Appl Environ Microbiol 70:, 2245–2253. [CrossRef][PubMed]
    [Google Scholar]
  34. Nercessian O., Bienvenu N., Moreira D., Prieur D., Jeanthon C.. ( 2005;). Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. . Environ Microbiol 7:, 118–132. [CrossRef][PubMed]
    [Google Scholar]
  35. Op den Camp H. J. M., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S. M., Birkeland N. K., Pol A., Dunfield P. F.. ( 2009;). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. . Environ Microbiol Rep 1:, 293–306. [CrossRef][PubMed]
    [Google Scholar]
  36. Roussel E. G., Konn C., Charlou J.-L., Donval J.-P., Fouquet Y., Querellou J., Prieur D., Cambon Bonavita M. A.. ( 2011;). Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. . FEMS Microbiol Ecol 77:, 647–665. [CrossRef][PubMed]
    [Google Scholar]
  37. Spiekermann P., Rehm B. H. A., Kalscheuer R., Baumeister D., Steinbüchel A.. ( 1999;). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. . Arch Microbiol 171:, 73–80. [CrossRef][PubMed]
    [Google Scholar]
  38. Stein L. Y., Klotz M. G.. ( 2011;). Nitrifying and denitrifying pathways of methanotrophic bacteria. . Biochem Soc Trans 39:, 1826–1831. [CrossRef][PubMed]
    [Google Scholar]
  39. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  40. Trotsenko Iu. A., Medvedkova K. A., Khmelenina V. N., Eshinimaev B. Ts.. ( 2009;). [Thermophilic and thermotolerant aerobic methanotrophs]. . Mikrobiologiia 78:, 435–450 (in Russian).[PubMed]
    [Google Scholar]
  41. Tsubota J., Eshinimaev B. Ts., Khmelenina V. N., Trotsenko Y. A.. ( 2005;). Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. . Int J Syst Evol Microbiol 55:, 1877–1884. [CrossRef][PubMed]
    [Google Scholar]
  42. Vorobev A. V., Baani M., Doronina N. V., Brady A. L., Liesack W., Dunfield P. F., Dedysh S. N.. ( 2011;). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. . Int J Syst Evol Microbiol 61:, 2456–2463. [CrossRef][PubMed]
    [Google Scholar]
  43. Vuilleumier S., Khmelenina V. N., Bringel F., Reshetnikov A. S., Lajus A., Mangenot S., Rouy Z., Op den Camp H. J. M., Jetten M. S. M.. & other authors ( 2012;). Genome sequence of the haloalkaliphilic methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. . J Bacteriol 194:, 551–552. [CrossRef][PubMed]
    [Google Scholar]
  44. Ward N., Larsen Ø., Sakwa J., Bruseth L., Khouri H., Durkin A. S., Dimitrov G., Jiang L., Scanlan D.. & other authors ( 2004;). Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). . PLoS Biol 2:, e303. [CrossRef][PubMed]
    [Google Scholar]
  45. Zehr J. P., McReynolds L. A.. ( 1989;). Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. . Appl Environ Microbiol 55:, 2522–2526.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058172-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058172-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error