1887

Abstract

An extremely halophilic archaeon, strain D108, was isolated from a brine sample of Aran-Bidgol salt lake in Iran. The novel strain was cream-pigmented, motile, pleomorphic rod-shaped and required at least 2.5 M NaCl but not MgCl for growth. Optimal growth was achieved with 4.3 M NaCl and 0.1 M MgCl. The optimum pH and temperature for growth were pH 7.5 and 40 °C, respectively, and the strain was able to grow over a pH range of 6.5 to 9.0, and a temperature range of 30 to 50 °C. Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain D108 clustered with the type strain of the sole species of the genus , TNN28, with a sequence similarity of 98.8 %. The polar lipid pattern of strain D108 consisted of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, one phosphoglycolipid and two glycolipids. The only quinone present was MK-8(II-H). The DNA GC content of strain D108 was 62.8 mol%. DNA–DNA hybridization studies (45 % with IBRC-M 10760), as well as biochemical and physiological characterization, allowed strain D108 to be differentiated from . A novel species of the genus , sp. nov., is therefore proposed to accommodate this strain. The type strain is D108 ( = IBRC-M 10043 = CECT 8375). An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058164-0
2014-03-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/940.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058164-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized [sic] atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  2. Bryant M. P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  3. Cui H. L., Yang X., Gao X., Xu X. W.. ( 2011;). Halobellus clavatus gen. nov., sp. nov. and Halorientalis regularis gen. nov., sp. nov., two new members of the family Halobacteriaceae. . Int J Syst Evol Microbiol 61:, 2682–2689. [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  6. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  7. Dyall-Smith M.. ( 2008;). The Halohandbook: Protocols for Haloarchaeal Genetics. . http://www.haloarchaea.com/resources/halohandbook.
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. González C., Gutiérrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  11. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  12. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A.. ( 2001;). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). . Int J Syst Evol Microbiol 51:, 1133–1142. [CrossRef][PubMed]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  14. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  17. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  22. Wainø M., Tindall B. J., Ingvorsen K.. ( 2000;). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. . Int J Syst Evol Microbiol 50:, 183–190. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058164-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058164-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error