1887

Abstract

A Gram-stain-negative, aerobic, oxidase- and catalase-positive, flagellated, rod-shaped bacterial strain, designated SM1222, was isolated from the deep-sea sediment of the South China Sea. The strain grew at 4–35 °C and with 0.5–8 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1222 was affiliated with the genus in the class . It shared the highest sequence similarity with the type strain of (96.8 %) and 95.4–96.6 % sequence similarities with type strains of other species of the genus with validly published names. Strain SM1222 contained summed feature 3 (Cω7 and/or iso-C 2-OH), Cω7, C, C and summed feature 2 (C 3-OH and/or iso-C I) as the major fatty acids and ubiquinone Q-8 as the predominant respiratory quinone. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of strain SM1222 was 51.5 mol%. On the basis of the evidence presented in this study, strain SM1222 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is SM1222 ( = CCTCC AB 2013241 = KCTC 32510). An emended description of the genus Romanenko 2003 emend. Choi 2011 is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058115-0
2014-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1252.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058115-0&mimeType=html&fmt=ahah

References

  1. Choi W. C., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H.. ( 2011;). Oceanisphaera ostreae sp. nov., isolated from seawater of an oyster farm, and emended description of the genus Oceanisphaera Romanenko et al. 2003. . Int J Syst Evol Microbiol 61:, 2880–2884. [CrossRef][PubMed]
    [Google Scholar]
  2. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  4. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  5. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207.
    [Google Scholar]
  6. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  7. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  8. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  9. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Park S. J., Kang C. H., Nam Y. D., Bae J. W., Park Y. H., Quan Z. X., Moon D. S., Kim H. J., Roh D. H., Rhee S. K.. ( 2006;). Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. . Int J Syst Evol Microbiol 56:, 895–898. [CrossRef][PubMed]
    [Google Scholar]
  11. Romanenko L. A., Schumann P., Zhukova N. V., Rohde M., Mikhailov V. V., Stackebrandt E.. ( 2003;). Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. . Int J Syst Evol Microbiol 53:, 1885–1888. [CrossRef][PubMed]
    [Google Scholar]
  12. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  13. Shieh W. Y., Lin Y. T., Jean W. D.. ( 2004;). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. . Int J Syst Evol Microbiol 54:, 2307–2312. [CrossRef][PubMed]
    [Google Scholar]
  14. Shin N.-R., Whon T. W., Roh S. W., Kim M.-S., Kim Y. O., Bae J. W.. ( 2012;). Oceanisphaera sediminis sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 62:, 1552–1557. [CrossRef][PubMed]
    [Google Scholar]
  15. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058115-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058115-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error