1887

Abstract

A novel strain of methanogenic archaea, designated MC-20, was isolated from the anoxic sediment of a subsurface lake in Movile Cave, Mangalia, Romania. Cells were non-motile, Gram-stain-negative rods 3.5–4.0 µm in length and 0.6–0.7 µm in width, and occurred either singly or in short chains. Strain MC-20 was able to utilize H/CO, formate, 2-propanol and 2-butanol as substrate, but not acetate, methanol, ethanol, dimethyl sulfide, monomethylamine, dimethylamine or trimethylamine. Neither trypticase peptone nor yeast extract was required for growth. The major membrane lipids of strain MC-20 were archaeol phosphatidylethanolamine and diglycosyl archaeol, while archaeol phosphatidylinositol and glycosyl archaeol were present only in minor amounts. Optimal growth was observed at 33 °C, pH 7.4 and 0.08 M NaCl. Based on phylogenetic analysis of 16S rRNA gene sequences, strain MC-20 was closely affiliated with FPi (similarity 97.1 %) and 17A1 (97.0 %). The G+C content of the genomic DNA was 33.0 mol%. Based on phenotypic and genotypic differences, strain MC-20 was assigned to a novel species of the genus for which the name sp. nov. is proposed. The type strain is MC-20 ( = DSM 26032 = JCM 18470).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057224-0
2014-02-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/522.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057224-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  2. Borrel G., Joblin K., Guedon A., Colombet J., Tardy V., Lehours A.-C., Fonty G.. ( 2012;). Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. . Int J Syst Evol Microbiol 62:, 1625–1629. [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y., Wu L., Boden R., Hillebrand A., Kumaresan D., Moussard H., Baciu M., Lu Y., Murrell J. C.. ( 2009;). Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. . ISME J 3:, 1093–1104. [CrossRef][PubMed]
    [Google Scholar]
  4. De Rosa M., Morana A., Riccio A., Gambacorta A., Trincone A., Incani O.. ( 1994;). Lipids of the Archaea: a new tool for bioelectronics. . Biosens Bioelectron 9:, 669–675. [CrossRef]
    [Google Scholar]
  5. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  6. Falniowski A., Szarowska M., Sirbu I., Hillebrand A., Baciu M.. ( 2008;). Heleobia dobrogica (Grossu & Negrea, 1989) (Gastropoda: Rissooidea: Cochliopidae), and the estimated time of its isolation in a continental analogue of hydrothermal vents. . Molluscan Res 28:, 165–170.
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Hershberger K. L., Barns S. M., Reysenbach A.-L., Dawson S. C., Pace N. R.. ( 1996;). Wide diversity of Crenarchaeota. . Nature 384:, 420. [CrossRef][PubMed]
    [Google Scholar]
  11. Hilpert R., Winter J., Hammes W., Kandler O.. ( 1981;). The sensitivity of archaebacteria to antibiotics. . Zentralbl Bakteriol Mikrobio Hygiene 2:, 11–20.
    [Google Scholar]
  12. Hutchens E., Radajewski S., Dumont M. G., McDonald I. R., Murrell J. C.. ( 2004;). Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. . Environ Microbiol 6:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Joulian C., Patel B. K. C., Ollivier B., Garcia J. L., Roger P. A.. ( 2000;). Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. . Int J Syst Evol Microbiol 50:, 525–528. [CrossRef][PubMed]
    [Google Scholar]
  14. Krivushin K. V., Shcherbakova V. A., Petrovskaya L. E., Rivkina E. M.. ( 2010;). Methanobacterium veterum sp. nov., from ancient Siberian permafrost. . Int J Syst Evol Microbiol 60:, 455–459. [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  16. Ma K., Liu X. L., Dong X. Z.. ( 2005;). Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. . Int J Syst Evol Microbiol 55:, 325–329. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Morozova D., Wagner D.. ( 2007;). Stress response of methanogenic archaea from Siberian permafrost compared with methanogens from nonpermafrost habitats. . FEMS Microbiol Ecol 61:, 16–25. [CrossRef][PubMed]
    [Google Scholar]
  19. Powell G. E.. ( 1983;). Interpreting gas kinetics of batch culture. . Biotechnol Lett 5:, 437–440. [CrossRef]
    [Google Scholar]
  20. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sarbu S. M.. ( 2000;). Movile Cave: a chemoautotrophically based groundwater ecosystem. . In Subterranean Ecosystems, pp. 319–343. Edited by Wilkens H., Culver D. C., Humphreys W. F... Amsterdam:: Elsevier;.
    [Google Scholar]
  23. Sarbu S. M., Kane T. C.. ( 1995;). A subterranean chemoautotrophically based ecosystem. . NSS Bull 57:, 91–98.
    [Google Scholar]
  24. Sarbu S. M., Popa R.. ( 1992;). A unique chemoautotrophically based cave ecosystem. . In The Natural History of Biospeleology, pp. 637–666. Edited by Camacho A. I... Monogr. Mus. Nac. Cienc. Natur. Madrid:: C.S.I.C.;
    [Google Scholar]
  25. Sarbu S. M., Kinkle B. K., Vlasceanu L., Kane T. C., Popa R.. ( 1994;). Microbiological characterization of a sulfide-rich groundwater ecosystem. . Geomicrobiol J 12:, 175–182. [CrossRef]
    [Google Scholar]
  26. Sarbu S. M., Kane T. C., Kinkle B. K.. ( 1996;). A chemoautotrophically based cave ecosystem. . Science 272:, 1953–1955. [CrossRef][PubMed]
    [Google Scholar]
  27. Shlimon A. G., Friedrich M. W., Niemann H., Ramsing N. B., Finster K.. ( 2004;). Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). . Int J Syst Evol Microbiol 54:, 759–763. [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 4:, 152–155.
    [Google Scholar]
  29. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  30. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  31. Vlasceanu L., Popa R., Kinkle B. K.. ( 1997;). Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. . Appl Environ Microbiol 63:, 3123–3127.[PubMed]
    [Google Scholar]
  32. WoRMS ( 2013;). Methanobacterium Kluyver & van Niel, 1936. . Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=573630 on 20 September 2013.
  33. Zellner G., Bleicher K., Braun E., Kneifel H., Tindall B. J., Conway de Macario E., Winter J.. ( 1988;). Isolation and characterization of a new mesophilic, secondary alcohol utilizing methanogen, Methanobacterium palustre spec. nov., from a peat bog. . Arch Microbiol 151:, 1–9. [CrossRef]
    [Google Scholar]
  34. Zink K.-G., Mangelsdorf K.. ( 2004;). Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. . Anal Bioanal Chem 380:, 798–812. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057224-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057224-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error