1887

Abstract

During a study to investigate the diversity of rhizobia associated with native legumes in South Africa’s Cape Floristic Region, a Gram-negative bacterium designated VG1C was isolated from the root nodules of Thunb. Based on phylogenetic analyses of the 16S rRNA and genes, VG1C belongs to the genus , with the highest degree of sequence similarity to the type strain of (98.5 % and 98 %, respectively). The DNA G+C content of strain VG1C was 60.1 mol%, and DNA–DNA relatedness values to the type strain of closely related species were found to be substantially lower than 70 %. As evidenced by results of genotypic, phenotypic and chemotaxonomic tests provided here, we conclude that isolate VG1C represents a novel rhizosphere-associated species in the genus , for which the name sp. nov. is proposed, with the type strain VG1C ( = DSM 27239 = LMG 27731).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.057067-0
2014-06-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1906.html?itemId=/content/journal/ijsem/10.1099/ijs.0.057067-0&mimeType=html&fmt=ahah

References

  1. Andam C. P., Mondo S. J., Parker M. A.. ( 2007;). Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. . Appl Environ Microbiol 73:, 4686–4690. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrett C. F., Parker M. A.. ( 2005;). Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. . Syst Appl Microbiol 28:, 57–65. [CrossRef][PubMed]
    [Google Scholar]
  3. Barrett C. F., Parker M. A.. ( 2006;). Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. . Appl Environ Microbiol 72:, 1198–1206. [CrossRef][PubMed]
    [Google Scholar]
  4. Beukes C. W., Venter S. N., Law I. J., Phalane F. L., Steenkamp E. T.. ( 2013;). South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. . PLoS ONE 8:, e68406. [CrossRef][PubMed]
    [Google Scholar]
  5. Bontemps C., Elliott G. N., Simon M. F., Dos Reis Júnior F. B., Gross E., Lawton R. C., Neto N. E., de Fátima Loureiro M., De Faria S. M.. & other authors ( 2010;). Burkholderia species are ancient symbionts of legumes. . Mol Ecol 19:, 44–52. [CrossRef][PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen W. M., Moulin L., Bontemps C., Vandamme P., Béna G., Boivin-Masson C.. ( 2003;). Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. . J Bacteriol 185:, 7266–7272. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen W. M., de Faria S. M., Straliotto R., Pitard R. M., Simões-Araùjo J. L., Chou J. H., Chou Y. J., Barrios E., Prescott A. R.. & other authors ( 2005a;). Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America. . Appl Environ Microbiol 71:, 7461–7471. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen W. M., James E. K., Chou J. H., Sheu S. Y., Yang S. Z., Sprent J. I.. ( 2005b;). β-Rhizobia from Mimosa pigra, a newly discovered invasive plant in Taiwan. . New Phytol 168:, 661–675. [CrossRef][PubMed]
    [Google Scholar]
  10. Dance D. A. B.. ( 2000;). Ecology of Burkholderia pseudomallei and the interactions between environmental Burkholderia spp. and human-animal hosts. . Acta Trop 74:, 159–168. [CrossRef][PubMed]
    [Google Scholar]
  11. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  12. Eisen J. A.. ( 1995;). The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. . J Mol Evol 41:, 1105–1123. [CrossRef][PubMed]
    [Google Scholar]
  13. Elliott G. N., Chou J. H., Chen W. M., Bloemberg G. V., Bontemps C., Martínez-Romero E., Velázquez E., Young J. P., Sprent J. I., James E. K.. ( 2009;). Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. . Environ Microbiol 11:, 762–778. [CrossRef][PubMed]
    [Google Scholar]
  14. Farrelly V., Rainey F. A., Stackebrandt E.. ( 1995;). Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. . Appl Environ Microbiol 61:, 2798–2801.[PubMed]
    [Google Scholar]
  15. Garrity G. M., Bell J. A., Liburn T.. ( 2005;). Family I. Burkholderiaceae. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 438–475. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  16. Gillis M., Van Van T., Bardin R., Goor M., Hebbar P., Willems A., Segers P., Kersters K., Heulin T., Fernandez M. P.. ( 1995;). Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. . Int J Syst Bacteriol 45:, 274–289. [CrossRef]
    [Google Scholar]
  17. Goris J., De Vos P., Caballero-Mellado J., Park J., Falsen E., Quensen J. F. III, Tiedje J. M., Vandamme P.. ( 2004;). Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov.. Int J Syst Evol Microbiol 54:, 1677–1681. [CrossRef][PubMed]
    [Google Scholar]
  18. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  19. Holmes D. E., Nevin K. P., Lovley D. R.. ( 2004;). Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov.. Int J Syst Evol Microbiol 54:, 1591–1599. [CrossRef][PubMed]
    [Google Scholar]
  20. Howieson J. G., Loi A., Carr S. J.. ( 1995;). Biserrula pelecinus L.- a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. . Aust J Agric Res 46:, 997–1009. [CrossRef]
    [Google Scholar]
  21. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  22. Jorgensen J. H., Ferraro M. J.. ( 2009;). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. . Clin Infect Dis 49:, 1749–1755. [CrossRef][PubMed]
    [Google Scholar]
  23. Kanu S. A., Dakora F. D.. ( 2012;). Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the Cape Fynbos, South Africa. . Soil Biol Biochem 54:, 68–76. [CrossRef]
    [Google Scholar]
  24. Kim H.-B., Park M.-J., Yang H.-C., An D.-S., Jin H.-Z., Yang D.-C.. ( 2006;). Burkholderia ginsengisoli sp. nov., a β-glucosidase-producing bacterium isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 56:, 2529–2533. [CrossRef][PubMed]
    [Google Scholar]
  25. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  26. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  27. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  28. Leitão J. H., Sousa S. A., Ferreira A. S., Ramos C. G., Silva I. N., Moreira L. M.. ( 2010;). Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. . Appl Microbiol Biotechnol 87:, 31–40. [CrossRef][PubMed]
    [Google Scholar]
  29. Lim J. H., Baek S. H., Lee S. T.. ( 2008;). Burkholderia sediminicola sp. nov., isolated from freshwater sediment. . Int J Syst Evol Microbiol 58:, 565–569. [CrossRef][PubMed]
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  31. Mishra R. P., Tisseyre P., Melkonian R., Chaintreuil C., Miché L., Klonowska A., Gonzalez S., Bena G., Laguerre G., Moulin L.. ( 2012;). Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia. . FEMS Microbiol Ecol 79:, 487–503. [CrossRef][PubMed]
    [Google Scholar]
  32. Moulin L., Munive A., Dreyfus B., Boivin-Masson C.. ( 2001;). Nodulation of legumes by members of the β-subclass of Proteobacteria. . Nature 411:, 948–950. [CrossRef][PubMed]
    [Google Scholar]
  33. Muyzer G., de Waal E. C., Uitterlinden A. G.. ( 1993;). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. . Appl Environ Microbiol 59:, 695–700.[PubMed]
    [Google Scholar]
  34. Payne G. W., Vandamme P., Morgan S. H., LiPuma J. J., Coenye T., Weightman A. J., Jones T. H., Mahenthiralingam E.. ( 2005;). Development of a recA gene-based identification approach for the entire Burkholderia genus. . Appl Environ Microbiol 71:, 3917–3927. [CrossRef][PubMed]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Somasegaran P., Hoben H. J.. ( 1994;). Handbook for Rhizobia: Methods in Legume-Rhizobium Technology. New York:: Springer;. [CrossRef]
    [Google Scholar]
  37. Stackebrandt E., Lang E., Cousin S., Päuker O., Brambilla E., Kroppenstedt R., Lünsdorf H.. ( 2007;). Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria. . Int J Syst Evol Microbiol 57:, 639–645. [CrossRef][PubMed]
    [Google Scholar]
  38. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  39. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef][PubMed]
    [Google Scholar]
  40. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  42. van Waasbergen L. G., Balkwill D. L., Crocker F. H., Bjornstad B. N., Miller R. V.. ( 2000;). Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. . Appl Environ Microbiol 66:, 3454–3463. [CrossRef][PubMed]
    [Google Scholar]
  43. Vandamme P., Opelt K., Knöchel N., Berg C., Schönmann S., De Brandt E., Eberl L., Falsen E., Berg G.. ( 2007;). Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. . Int J Syst Evol Microbiol 57:, 2228–2235. [CrossRef][PubMed]
    [Google Scholar]
  44. Vincent J. M.. ( 1970;). A Manual for the Practical Study of the Root-Nodule Bacteria (IBP Handbook no. 15). Oxford:: Blackwell Scientific;.
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  46. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  47. Yabuuchi E., Kosako Y., Oyaizu H., Yano I., Hotta H., Hashimoto Y., Ezaki T., Arakawa M.. ( 1992;). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. . Microbiol Immunol 36:, 1251–1275. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.057067-0
Loading
/content/journal/ijsem/10.1099/ijs.0.057067-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error