1887

Abstract

A Gram-stain-negative bacterial strain, designated 9NM-8, was isolated from an abandoned lead-zinc ore in Mei county, Meizhou, Guangdong province, PR China. The isolate was orange-pigmented, aerobic, oxidase- and catalase-positive, motile with lophotrichous flagella and rod-shaped. Strain 9NM-8 grew optimally at pH 7.0 and 30 °C and in the absence of NaCl on R2A agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 9NM-8 belongs to the genus , with highest sequence similarities to KACC 14484 (96.1 %), DSM 7225 (96.0 %) and DSM 13101 (95.6 %). Strain 9NM-8 contained Q-10 as the predominant ubiquinone. The major fatty acids included Cω7, C, Cω7 and/or Cω6 (summed feature 3) and 11-methyl Cω7. The DNA G+C content was 69.6±1.3 mol%. The major component in the polyamine pattern was -homospermidine and the polar lipid profile contained sphingoglycolipid, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and two unidentified phospholipids. Based on comparative analysis of physiological, chemotaxonomic and phylogenetic characteristics, strain 9NM-8 should be considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 9NM-8 ( = GIMCC 1.653 = CGMCC 1.12672 = DSM 27570).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056853-0
2014-05-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1697.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056853-0&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Busse H. J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P.. ( 2003;). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. . Int J Syst Evol Microbiol 53:, 1253–1260. [CrossRef][PubMed]
    [Google Scholar]
  3. Busse H. J., Hauser E., Kämpfer P.. ( 2005;). Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov.. Int J Syst Evol Microbiol 55:, 2565–2569. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Q. H., Chen J. H., Ruan Y., Zhang Y. Q., Tang S. K., Liu Z. X., Li W. J., Chen Y. G.. ( 2011;). Sphingomonas hunanensis sp. nov., isolated from forest soil. . Antonie van Leeuwenhoek 99:, 753–760. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen H., Jogler M., Rohde M., Klenk H. P., Busse H. J., Tindall B. J., Spröer C., Overmann J.. ( 2012;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. . Int J Syst Evol Microbiol 62:, 2835–2843. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  7. Denner E. B. M., Paukner S., Kämpfer P., Moore E. R. B., Abraham W. R., Busse H. J., Wanner G., Lubitz W.. ( 2001;). Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. . Int J Syst Evol Microbiol 51:, 827–841. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Hamana K., Hayashi H., Niitsu M., Takeda A., Itoh T.. ( 2013;). Cellular polyamines of alkaliphilic, halophilic and thermophilic methanogens and acidophilic and alkaliphilic extreme halophiles, and acidophilic thermophiles belonging to the domain Archaea. . J Jpn Soc Extremophiles 12:, 15–28.
    [Google Scholar]
  12. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. . J Gen Appl Microbiol 42:, 457–469. [CrossRef]
    [Google Scholar]
  13. Jogler M., Chen H., Simon J., Rohde M., Busse H. J., Klenk H. P., Tindall B. J., Overmann J.. ( 2013;). Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov.. Int J Syst Evol Microbiol 63:, 1342–1349. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Denner E. B. M., Meyer S., Moore E. R. B., Busse H.-J.. ( 1997;). Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov.. Int J Syst Bacteriol 47:, 577–583. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  21. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–655. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Srinivasan S., Lee J. J., Kim M. K.. ( 2011;). Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov., rosy colored β-glucosidase-producing bacteria isolated from soil. . J Microbiol 49:, 610–616. [CrossRef][PubMed]
    [Google Scholar]
  23. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 365–, 384–385. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  28. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  29. Xie C. H., Yokota A.. ( 2006;). Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. . Int J Syst Evol Microbiol 56:, 889–893. [CrossRef][PubMed]
    [Google Scholar]
  30. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  31. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K.. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef][PubMed]
    [Google Scholar]
  32. Yi T. H., Han C. K., Srinivasan S., Lee K. J., Kim M. K.. ( 2010;). Sphingomonas humi sp. nov., isolated from soil. . J Microbiol 48:, 165–169. [CrossRef][PubMed]
    [Google Scholar]
  33. Yim M. S., Yau Y. C. W., Matlow A., So J. S., Zou J., Flemming C. A., Schraft H., Leung K. T.. ( 2010;). A novel selective growth medium-PCR assay to isolate and detect Sphingomonas in environmental samples. . J Microbiol Methods 82:, 19–27. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056853-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056853-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error