1887

Abstract

Two bacterial strains, designated JS4-4 and SHS5-24, were isolated from forest soil of Jeju Island and fresh water of Seoho lake in Suwon city, respectively, South Korea. Both strains were Gram-stain-negative, aerobic, motile rods. Strains JS4-4 and SHS5-24 showed high sequence similarities (97.6–95.8 %) and (96.5–95.6 %), respectively, to the members of the genus . The sequence similarity between strains JS4-4 and SHS5-24 was 97.0 %. A phylogenetic tree showed that these strains fell within the radius of the genus . The main fatty acids of strains JS4-4 and SHS5-24 were summed feature 3 (Cω7 and/or Cω6) (50.1 and 58.7 %, respectively) and C (28.3 and 24.5 %, respectively). Both strains had ubiquinone 8 as the only respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the major polar lipids. Strain JS4-4 showed <70 % DNA–DNA hybridization with members of the genus . Thus, based on the evidence of a polyphasic study, it is proposed that strains JS4-4 and SHS5-24 represent two novel species, for which the names sp. nov. (type strain JS4-4 = KACC 12607 = NBRC 108922) and sp. nov. (type strain SHS5-24 = KACC 16656 = NBRC 108929) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056846-0
2014-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/236.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056846-0&mimeType=html&fmt=ahah

References

  1. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Eder W., Wanner G., Ludwig W., Busse H. J., Ziemke-Kägeler F., Lang E.. ( 2011;). Description of Undibacterium oligocarboniphilum sp. nov., isolated from purified water, and Undibacterium pigrum strain CCUG 49012 as the type strain of Undibacterium parvum sp. nov., and emended descriptions of the genus Undibacterium and the species Undibacterium pigrum. . Int J Syst Evol Microbiol 61:, 384–391. [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  5. Kämpfer P., Rosselló-Mora R., Hermansson M., Persson F., Huber B., Falsen E., Busse H.-J.. ( 2007;). Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. . Int J Syst Evol Microbiol 57:, 1510–1515. [CrossRef][PubMed]
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  7. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  8. Liu Y. Q., Wang B. J., Zhou N., Liu S. J.. ( 2013;). Undibacterium terreum sp. nov., isolated from permafrost soil. . Int J Syst Evol Microbiol 63:, 2296–2300. [CrossRef][PubMed]
    [Google Scholar]
  9. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  10. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  11. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  12. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  13. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  14. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  15. Weon H. Y., Kim B. Y., Yoo S. H., Lee S. Y., Kwon S. W., Go S. J., Stackebrandt E.. ( 2006;). Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 56:, 1777–1782. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056846-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056846-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error