1887

Abstract

A mesophilic, anaerobic, cellulolytic and xylanolytic strain, UasXn-3, was isolated from anaerobic granular sludge in a mesophilic upflow anaerobic sludge blanket reactor, which was used to treat municipal sewage. The cells were Gram-stain-negative, non-motile, and non-spore-forming rods. The optimal temperature for growth was 37–40 °C and the optimal pH for growth was pH 6.5–7.0. Strain UasXn-3 could grow on several polysaccharides and sugars, including cellulose, cellobiose, xylan, xylose, glucose, fructose, arabinose, mannose, raffinose, trehalose and starch. The DNA G+C content was 44.4 mol%. On the basis of comparative 16S rRNA gene sequence analysis, strain UasXn-3 was identified as a member of the genus and most closely related to and (sequence similarities of 91.3–91.6 %). Since the genetic and phenotypic properties suggest that strain UasXn-3 represents a novel species, we propose the name sp. nov. The type strain is UasXn-3 ( = JCM 19020 = DSM 26991).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.056630-0
2014-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1770.html?itemId=/content/journal/ijsem/10.1099/ijs.0.056630-0&mimeType=html&fmt=ahah

References

  1. Akasaka H., Izawa T., Ueki K., Ueki A.. ( 2003;). Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. . FEMS Microbiol Ecol 43:, 149–161. [CrossRef][PubMed]
    [Google Scholar]
  2. Bakir M. A., Kitahara M., Sakamoto M., Matsumoto M., Benno Y.. ( 2006;). Bacteroides intestinalis sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 56:, 151–154. [CrossRef][PubMed]
    [Google Scholar]
  3. Bibby K., Viau E., Peccia J.. ( 2010;). Pyrosequencing of the 16S rRNA gene to reveal bacterial pathogen diversity in biosolids. . Water Res 44:, 4252–4260. [CrossRef][PubMed]
    [Google Scholar]
  4. Chouari R., Le Paslier D., Daegelen P., Ginestet P., Weissenbach J., Sghir A.. ( 2005;). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. . Environ Microbiol 7:, 1104–1115. [CrossRef][PubMed]
    [Google Scholar]
  5. Foresti L.. ( 2002;). Anaerobic treatment of domestic sewage: established technologies and perspectives. . Water Sci Technol 45:, 181–186.[PubMed]
    [Google Scholar]
  6. Hatamoto M., Imachi H., Ohashi A., Harada H.. ( 2007a;). Identification and cultivation of anaerobic, syntrophic long-chain fatty acid-degrading microbes from mesophilic and thermophilic methanogenic sludges. . Appl Environ Microbiol 73:, 1332–1340. [CrossRef][PubMed]
    [Google Scholar]
  7. Hatamoto M., Imachi H., Fukayo S., Ohashi A., Harada H.. ( 2007b;). Syntrophomonas palmitatica sp. nov., an anaerobic, syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from methanogenic sludge. . Int J Syst Evol Microbiol 57:, 2137–2142. [CrossRef][PubMed]
    [Google Scholar]
  8. Hatamoto M., Imachi H., Yashiro Y., Ohashi A., Harada H.. ( 2007c;). Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. . Appl Environ Microbiol 73:, 4119–4127. [CrossRef][PubMed]
    [Google Scholar]
  9. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strick anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  10. Khan A. A., Gaur R. Z., Tyagi V. K., Khursheed A., Lew B., Mehrotra I., Kazmi A. A.. ( 2011;). Sustainable options of post treatment of UASB effluent treating sewage: A review. . Resour Conserv Recycling 55:, 1232–1251. [CrossRef]
    [Google Scholar]
  11. Nishiyama T., Ueki A., Kaku N., Watanabe K., Ueki K.. ( 2009;). Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. . Int J Syst Evol Microbiol 59:, 1901–1907. [CrossRef][PubMed]
    [Google Scholar]
  12. Qiu Y. L., Sekiguchi Y., Imachi H., Kamagata Y., Tseng I. C., Cheng S. S., Ohashi A., Harada H.. ( 2004;). Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. . Appl Environ Microbiol 70:, 1617–1626. [CrossRef][PubMed]
    [Google Scholar]
  13. Robert C., Chassard C., Lawson P. A., Bernalier-Donadille A.. ( 2007;). Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. . Int J Syst Evol Microbiol 57:, 1516–1520. [CrossRef][PubMed]
    [Google Scholar]
  14. Sakamoto M., Ohkuma M.. ( 2011;). Identification and classification of the genus Bacteroides by multilocus sequence analysis. . Microbiology 157:, 3388–3397. [CrossRef][PubMed]
    [Google Scholar]
  15. Sakamoto M., Suzuki N., Benno Y.. ( 2010;). hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes. . Int J Syst Evol Microbiol 60:, 2984–2990. [CrossRef][PubMed]
    [Google Scholar]
  16. Song Y., Liu C., Finegold S. M.. ( 2011;). Genus I. Bacteroides. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 27–41. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  17. Syutsubo K., Yoochatchaval W., Tsushima I., Araki N., Kubota K., Onodera T., Takahashi M., Yamaguchi T., Yoneyama Y.. ( 2011;). Evaluation of sludge properties in a pilot-scale UASB reactor for sewage treatment in a temperate region. . Water Sci Technol 64:, 1959–1966. [CrossRef][PubMed]
    [Google Scholar]
  18. Takahashi M., Ohya A., Kawakami S., Yoneyama Y., Onodera T., Syutsubo K., Yamazaki S., Araki N., Ohashi A.. & other authors ( 2011;). Evaluation of treatment characteristics and sludge properties in a UASB reactor treating municipal sewage at ambient temperature. . Int J Environ Res 5:, 821–826.
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Ueki A., Abe K., Kaku N., Watanabe K., Ueki K.. ( 2008;). Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. . Int J Syst Evol Microbiol 58:, 346–352. [CrossRef][PubMed]
    [Google Scholar]
  21. Ueki A., Abe K., Ohtaki Y., Kaku N., Watanabe K., Ueki K.. ( 2011;). Bacteroides paurosaccharolyticus sp. nov., isolated from a methanogenic reactor treating waste from cattle farms. . Int J Syst Evol Microbiol 61:, 448–453. [CrossRef][PubMed]
    [Google Scholar]
  22. Watanabe Y., Nagai F., Morotomi M., Sakon H., Tanaka R.. ( 2010;). Bacteroides clarus sp. nov., Bacteroides fluxus sp. nov. and Bacteroides oleiciplenus sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 60:, 1864–1869. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.056630-0
Loading
/content/journal/ijsem/10.1099/ijs.0.056630-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error