1887

Abstract

A novel type of mineral-weathering bacterium was isolated from purplish soils collected from Yanting (Sichuan, south-western China). Cells of strain 1007 were Gram-stain-negative and rod-shaped, motile and yellow-pigmented. The isolate was strictly aerobic, catalase- and oxidase-positive, and grew optimally at 28-30 °C and pH 6.0-7.0. The genomic DNA G+C content of strain 1007 was 67±0.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 1007 belonged to the genus and was most closely related to IFO 15498 (97.3 %), IFO 15500 (97.2 %), KC7 (97.2 %) and JSS26 (97.0 %). This affiliation of strain 1007 to the genus was confirmed by the presence of Q-10 as the major ubiquinone, sphingoglycolipid, C 2-OH and by the absence of 3-hydroxy fatty acids. The major polyamine was homospermidine. The main cellular fatty acids included summed feature 8 (comprising Cω7 and/or Cω6) and C. Based on the low level of DNA–DNA relatedness (ranging from 26.1 % to 58.7 %) to these type strains of species of the genus and unique phenotypic characteristics, strain 1007 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1007 ( = DSM 27244 = JCM 19201 = CCTCC AB 2013146).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055954-0
2014-03-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/1030.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055954-0&mimeType=html&fmt=ahah

References

  1. An D.-S. , Liu Q.-M. , Lee H.-G. , Jung M.-S. , Kim S.-C. , Lee S.-T. , Im W.-T. . ( 2013; ). Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. . Int J Syst Evol Microbiol 63:, 496–501. [CrossRef] [PubMed]
    [Google Scholar]
  2. Busse H.-J. , Kämpfer P. , Denner E. B. M. . ( 1999; ). Chemotaxonomic characterisation of Sphingomonas . . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse H.-J. , Denner E. B. M. , Buczolits S. , Salkinoja-Salonen M. , Bennasar A. , Kämpfer P. . ( 2003; ). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . . Int J Syst Evol Microbiol 53:, 1253–1260. [CrossRef] [PubMed]
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  5. Denner E. B. , Paukner S. , Kämpfer P. , Moore E. R. , Abraham W. R. , Busse H. J. , Wanner G. , Lubitz W. . ( 2001; ). Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. . Int J Syst Evol Microbiol 51:, 827–841. [CrossRef] [PubMed]
    [Google Scholar]
  6. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98. [CrossRef]
    [Google Scholar]
  7. Holt J. G. , Krieg N. , Sneath P. , Staley J. , Williams S. . ( 1994; ). Bergey's manual of determinative bacteriology. . Baltimore, MD 152:. [CrossRef]
    [Google Scholar]
  8. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , Yi H. , Won S. , Chun J. . ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  10. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lee J. S. , Shin Y. K. , Yoon J. H. , Takeuchi M. , Pyun Y. R. , Park Y. H. . ( 2001; ). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . International Journal of Systematic and Evolutionary Microbiology 51:, 1491–1498. [CrossRef]
    [Google Scholar]
  12. Maruyama T. , Park H.-D. , Ozawa K. , Tanaka Y. , Sumino T. , Hamana K. , Hiraishi A. , Kato K. . ( 2006; ). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56:, 85–89. [CrossRef] [PubMed]
    [Google Scholar]
  13. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Microbiol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . Journal of Microbiol Meth 2:, 233–241. [CrossRef]
    [Google Scholar]
  15. Romanenko L. A. , Tanaka N. , Frolova G. M. , Mikhailov V. V. . ( 2009; ). Sphingomonas japonica sp. nov., isolated from the marine crustacean Paralithodes camtschatica . . Int J Syst Evol Microbiol 59:, 1179–1182.[PubMed] [CrossRef]
    [Google Scholar]
  16. Rowe N. J. , Tunstall J. , Galbraith L. , Wilkinson S. G. . ( 2000; ). Lipid composition and taxonomy of [Pseudomonas] echinoides: transfer to the genus Sphingomonas . . Microbiology 146:, 3007–3012.[PubMed]
    [Google Scholar]
  17. Sasser M. . ( 2001; ). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
  18. Takeuchi M. , Hiraishi A. . ( 2001; ). Taxonomic significance of 2-hydroxy fatty acid profiles of the species in the genus Sphingomonas and related taxa. . IFOsaka Res Commun 20:, 72–82.
    [Google Scholar]
  19. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993; ). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov.. Syst Appl Microbiol 16:, 227–238. [CrossRef]
    [Google Scholar]
  20. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  21. Takeuchi M. , Sakane T. , Yanagi M. , Yamasato K. , Hamana K. , Yokota A. . ( 1995; ). Taxonomic Study of Bacteria Isolated from Plants: Proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov.. . Int J Syst Bacteriol 45:, 334–341. [CrossRef] [PubMed]
    [Google Scholar]
  22. Talà A. , Lenucci M. , Gaballo A. , Durante M. , Tredici S. M. , Debowles D. A. , Pizzolante G. , Marcuccio C. , Carata E. . & other authors ( 2013; ). Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. . Int J Syst Evol Microbiol 63:, 72–79. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  24. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  25. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34:, 99–119. [CrossRef] [PubMed]
    [Google Scholar]
  26. Yabuuchi E. , Kosako Y. , Naka T. , Suzuki S. , Yano I. . ( 1999; ). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas . . Microbiol Immunol 43:, 339–349. [CrossRef] [PubMed]
    [Google Scholar]
  27. Yabuuchi E. , Kosako Y. , Fujiwara N. , Naka T. , Matsunaga I. , Ogura H. , Kobayashi K. . ( 2002; ). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef] [PubMed]
    [Google Scholar]
  28. Zhao F. , Guo X. Q. , Wang P. , He L. Y. , Huang Z. , Sheng X. F. . ( 2013; ). Dyella jiangningensis sp. nov., a γ-proteobacterium isolated from the surface of potassium-bearing rock. . Int J Syst Evol Microbiol 63:, 3154–3157. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055954-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055954-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error