1887

Abstract

A novel bacterial strain designated P-1 was isolated from the trunk surface of a Japanese oak () growing in the Shirakami Mountains in Japan. Cells of strain P-1 were Gram-stain-negative, ellipsoidal endospore-forming, aerobic, slightly acidophilic rods, 0.8×2–5 µm, and motile by means of peritrichous flagella. Various carbohydrates could be used as growth substrates, but none of the organic acids tested were used. The major cellular fatty acid was anteiso-C, which accounted for 64.2 % of the total fatty acids. The major respiratory quinone was menaquinone 7 (MK-7). Strain P-1 contained phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine, four unidentified aminolipids, an unidentified phospholipid and two unidentified polar lipids. Strain P-1 shared the highest 16S rRNA gene sequence similarity with S22 (96.6 %), followed by JCM 9905 (96.1 %) and MH21 (95.9 %). The DNA G+C content was 43.9 mol%. These data indicate that strain P-1 represents a novel species within the genus , for which we propose the name sp. nov. The type strain is P-1 (NBRC 109471 = DSM 26806 = KCTC 33126 = CIP 110571).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055772-0
2014-05-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1763.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055772-0&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D.. ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. . Antonie van Leeuwenhoek 64:, 253–260. [CrossRef][PubMed]
    [Google Scholar]
  2. Cheong H., Park S.-Y., Ryu C.-M., Kim J. F., Park S.-H.. ( 2005;). Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. . J Microbiol Biotechnol 15:, 1286–1298.
    [Google Scholar]
  3. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Hildebrandt U., Janetta K., Bothe H.. ( 2002;). Towards growth of arbuscular mycorrhizal fungi independent of a plant host. . Appl Environ Microbiol 68:, 1919–1924. [CrossRef][PubMed]
    [Google Scholar]
  6. Hildebrandt U., Ouziad F., Marner F. J., Bothe H.. ( 2006;). The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. . FEMS Microbiol Lett 254:, 258–267. [CrossRef][PubMed]
    [Google Scholar]
  7. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  8. Kim B. C., Lee K. H., Kim M. N., Kim E. M., Min S. R., Kim H. S., Shin K. S.. ( 2009;). Paenibacillus pini sp. nov., a cellulolytic bacterium isolated from the rhizosphere of pine tree. . J Microbiol 47:, 699–704. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim K. K., Lee K. C., Lee J. S.. ( 2011;). Reclassification of Paenibacillus ginsengisoli as a later heterotypic synonym of Paenibacillus anaericanus. . Int J Syst Evol Microbiol 61:, 2101–2106. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Kitamura K., Fujita T., Akada S., Tonouchi A.. ( 2011;). Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. . Int J Syst Evol Microbiol 61:, 1246–1252. [CrossRef][PubMed]
    [Google Scholar]
  12. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by high performance liquid chromatography using reverse phase (RP-18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5:, 2359–2369. [CrossRef]
    [Google Scholar]
  13. Lebuhn M., Heulin T., Hartmann A.. ( 1997;). Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. . FEMS Microbiol Ecol 22:, 325–334. [CrossRef]
    [Google Scholar]
  14. Lindow S. E., Brandl M. T.. ( 2003;). Microbiology of the phyllosphere. . Appl Environ Microbiol 69:, 1875–1883. [CrossRef][PubMed]
    [Google Scholar]
  15. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  17. Meyer K. M., Leveau J. H.. ( 2012;). Microbiology of the phyllosphere: a playground for testing ecological concepts. . Oecologia 168:, 621–629. [CrossRef][PubMed]
    [Google Scholar]
  18. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  20. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  21. Priest F. G.. ( 2009;). Genus I. Paenibacillus Ash, Priest and Collins 1994. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 3, pp. 269–295. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  22. Ruinen J.. ( 1956;). Occurrence of Beijerinckia species in the ‘phyllosphere’. . Nature 177:, 220–221. [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  25. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997a;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. . Int J Syst Bacteriol 47:, 289–298. [CrossRef][PubMed]
    [Google Scholar]
  26. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997b;). Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov.. Int J Syst Bacteriol 47:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  27. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  28. Smibert R., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in Bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  31. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Timmusk S., Wagner E. G.. ( 1999;). The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. . Mol Plant Microbe Interact 12:, 951–959. [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055772-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055772-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error