1887

Abstract

A novel, yellow-pigmented bacterium, designated strain MO64, was isolated from the rhizoplane of field-grown soybean, collected from an experimental plot at Coimbatore, India. Cells were Gram-reaction-negative, motile, non-spore-forming rods that produced yellow-pigmented colonies on R2A agar. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain MO64 belonged to the genus . Strain MO64 was related most closely to GR17-7 (98.0 % 16S rRNA gene sequence similarity), B39 (97.9 %), LnR5-47 (97.7 %), GP18-1 (97.6 %), DCY45 (97.3 %) and MJ01 (97.2 %); levels of similarity to the type strains of all other recognized species of the genus were less than 97.0 %. Chemotaxonomic data (Q-8 as the predominant ubiquinone, and iso-C, iso-C, C cyclo, iso-Cω9, iso-C and iso-C as the major fatty acids) also supported the affiliation of strain MO64 with the genus . The GC content of the genomic DNA was 64 mol%. The results of DNA–DNA hybridization and phenotypic analysis showed that strain MO64 can be distinguished from all known species of the genus and therefore represents a novel species of the genus, for which the name sp. nov. is proposed. The type strain is MO64 ( = ICMP 17626 = NBRC 105007).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055525-0
2014-06-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2023.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055525-0&mimeType=html&fmt=ahah

References

  1. An D.-S., Lee H.-G., Lee S.-T., Im W.-T.. ( 2009;). Rhodanobacter ginsenosidimutans sp. nov., isolated from soil of a ginseng field in South Korea. . Int J Syst Evol Microbiol 59:, 691–694. [CrossRef][PubMed]
    [Google Scholar]
  2. Bozzola J. J., Russell L. D.. ( 1998;). Electron Microscopy, , 2nd edn.. Sudbury, MS:: Jones & Bartlett;.
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. .In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Bui T. P., Kim Y. J., Kim H., Yang D. C.. ( 2010;). Rhodanobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 2935–2939. [CrossRef][PubMed]
    [Google Scholar]
  5. De Clercq D., Van Trappen S., Cleenwerck I., Ceustermans A., Swings J., Coosemans J., Ryckeboer J.. ( 2006;). Rhodanobacter spathiphylli sp. nov., a gammaproteobacterium isolated from the roots of Spathiphyllum plants grown in a compost-amended potting mix. . Int J Syst Evol Microbiol 56:, 1755–1759. [CrossRef][PubMed]
    [Google Scholar]
  6. DeLong E. F.. ( 1992;). Archaea in coastal marine environments.. . Proc Natl Acad Sci USA 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Gerhardt P. R., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim Y. S., Kim S. J., Anandham R., Weon H. Y., Kwon S. W.. ( 2013;). Rhodanobacter umsongensis sp. nov., isolated from a Korean ginseng field. . J Microbiol 51:, 258–261. [CrossRef][PubMed]
    [Google Scholar]
  13. Kroppenstedt R. M.. ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (SAB Technical Series no. 20), pp. 173–199. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  14. Lee C. S., Kim K. K., Aslam Z., Lee S. T.. ( 2007;). Rhodanobacter thiooxydans sp. nov., isolated from a biofilm on sulfur particles used in an autotrophic denitrification process. . Int J Syst Evol Microbiol 57:, 1775–1779. [CrossRef][PubMed]
    [Google Scholar]
  15. Madhaiyan M., Kim B.-Y., Poonguzhali S., Kwon S.-W., Song M.-H., Ryu J.-H., Go S.-J., Koo B.-S., Sa T.-M.. ( 2007;). Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. . Int J Syst Evol Microbiol 57:, 326–331. [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  18. Nalin R., Simonet P., Vogel T. M., Normand P.. ( 1999;). Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. . Int J Syst Bacteriol 49:, 19–23. [CrossRef][PubMed]
    [Google Scholar]
  19. Prakash O., Green S. J., Jasrotia P., Overholt W. A., Canion A., Watson D. B., Brooks S. C., Kostka J. E.. ( 2012;). Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. . Int J Syst Evol Microbiol 62:, 2457–2462. [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  22. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  24. Staley J. T., Boone D. R., Brenner D. J., Vos P. D., Garrity G. M., Goodfellow M., Krieg N. R., Rainey F. A., Schleifer K. H.. ( 2005;). Genus VII. . Rhodanobacter Nalin, Simonet, Vogel and Normand 1999, 22VP. In Bergey’s Manual of Systematic Bacteriology, 2nd Edn., (ed.) D. J. Brenner, N. R. Krieg, J. T. Staley. vol. 2, The Proteobacteria, Part B, Gamma Proteobacteria. p. 106
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  26. Wang L., An D. S., Kim S. G., Jin F. X., Lee S. T., Im W. T.. ( 2011;). Rhodanobacter panaciterrae sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 61:, 3028–3032. [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  28. Weon H. Y., Kim B. Y., Hong S. B., Jeon Y. A., Kwon S. W., Go S. J., Koo B. S.. ( 2007;). Rhodanobacter ginsengisoli sp. nov. and Rhodanobacter terrae sp. nov., isolated from soil cultivated with Korean ginseng. . Int J Syst Evol Microbiol 57:, 2810–2813. [CrossRef][PubMed]
    [Google Scholar]
  29. Whittenbury R., Phillips K. C., Wilkinson J. F.. ( 1970;). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61:, 205–218. [CrossRef][PubMed]
    [Google Scholar]
  30. Wilson K.. ( 1997;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  31. Woo S. G., Srinivasan S., Kim M. K., Lee M.. ( 2012;). Rhodanobacter caeni sp. nov., a denitrifying bacterium isolated from sludge in a sewage disposal plant. . Int J Syst Evol Microbiol 62:, 2815–2821. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang J., Zheng J. W., Hang B. J., Ni Y. Y., He J., Li S. P.. ( 2011;). Rhodanobacter xiangquanii sp. nov., a novel anilofos-degrading bacterium isolated from a wastewater treating system. . Curr Microbiol 62:, 645–649. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055525-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055525-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error