1887

Abstract

An aerobic, thermophilic, moderately acidophilic non-spore-forming bacterium, strain K22, was isolated from geothermally heated soil at Mount Ngauruhoe, New Zealand. On the basis of 16S rRNA gene sequence similarity, K22 was shown to belong to subdivision 4 of the phylum and to be most closely related to ‘ Chloracidobacterium thermophilum’ (86 %) and (86 %). Cells stained Gram-negative and were catalase and oxidase-positive. The major fatty acids detected were iso-C, iso-C, iso-C and iso-C when standard lipid extraction protocols were employed. Analysis of the total cell lipid acid hydrolysate also detected membrane-spanning and ether lipids, which made up approximately 40 % of the total membrane composition. These lipids included dicarboxylic (iso-diabolic) acid and the glyceryl ether of alkyl analogues of iso-C and iso-diabolic acid. The G+C content of the genomic DNA was 59.6 mol% and the primary respiratory quinone was MK-8. Strain K22 grew at 50–69 °C with an optimum temperature of 65 °C and at pH 4.1–7.8 with an optimum growth pH of 6.5. NaCl tolerance was up to 1 % (w/v). Cells displayed a chemoheterotrophic and obligately aerobic metabolism. Cells grew on nutrient broth, alginate, arabinose, Casamino acids, glucose, lactate, formate, mannose, sodium alginate, peptone, sucrose, tryptone, xanthan, xylan, xylose and yeast extract. Nitrogen sources included nitrate, ammonium, urea, yeast extract and Casamino acids, but not dinitrogen gas. The distinct phylogenetic position and the phenotypic characteristics separate strain K22 from all other members of the class and indicate that it represents a novel species and genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is K22 ( = DSM 25857 = ICMP 18710).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055079-0
2014-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/220.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055079-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Barns S. M., Takala S. L., Kuske C. R.. ( 1999;). Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. . Appl Environ Microbiol 65:, 1731–1737.[PubMed]
    [Google Scholar]
  3. Barns S. M., Cain E. C., Sommerville L., Kuske C. R.. ( 2007;). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. . Appl Environ Microbiol 73:, 3113–3116. [CrossRef][PubMed]
    [Google Scholar]
  4. Bryant D. A., Costas A. M., Maresca J. A., Chew A. G., Klatt C. G., Bateson M. M., Tallon L. J., Hostetler J., Nelson W. C.. & other authors ( 2007;). Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. . Science 317:, 523–526. [CrossRef][PubMed]
    [Google Scholar]
  5. Coates J. D., Ellis D. J., Gaw C. V., Lovley D. R.. ( 1999;). Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. . Int J Syst Bacteriol 49:, 1615–1622. [CrossRef][PubMed]
    [Google Scholar]
  6. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I. C., Damsté J. S.. ( 2012;). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. . Int J Syst Evol Microbiol 62:, 654–664. [CrossRef][PubMed]
    [Google Scholar]
  7. Eichorst S. A., Breznak J. A., Schmidt T. M.. ( 2007;). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. . Appl Environ Microbiol 73:, 2708–2717. [CrossRef][PubMed]
    [Google Scholar]
  8. Foesel B. U., Rohde M., Overmann J.. ( 2013;). Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil – the first described species of Acidobacteria subdivision 4. . Syst Appl Microbiol 36:, 82–89. [CrossRef][PubMed]
    [Google Scholar]
  9. Foote S. M.. ( 2002;). Microbial community analysis of polyhydroxyalkanoate genes in pulp and paper wastewater treatment systems. MSc thesis, University of Waikato;, Hamilton:.
    [Google Scholar]
  10. Fukunaga Y., Kurahashi M., Yanagi K., Yokota A., Harayama S.. ( 2008;). Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. . Int J Syst Evol Microbiol 58:, 2597–2601. [CrossRef][PubMed]
    [Google Scholar]
  11. Glamoclija M., Garrel L., Berthon J., López-García P.. ( 2004;). Biosignatures and bacterial diversity in hydrothermal deposits of Solfatara Crater, Italy. . Geomicrobiol J 21:, 529–541. [CrossRef]
    [Google Scholar]
  12. Gundlapally S. R., Garcia-Pichel F.. ( 2006;). The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. . Microb Ecol 52:, 345–357. [CrossRef][PubMed]
    [Google Scholar]
  13. Huber T., Faulkner G., Hugenholtz P.. ( 2004;). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. . Bioinformatics 20:, 2317–2319. [CrossRef][PubMed]
    [Google Scholar]
  14. Hugenholtz P., Goebel B. M., Pace N. R.. ( 1998;). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. . J Bacteriol 180:, 4765–4774.[PubMed]
    [Google Scholar]
  15. Izumi H., Nunoura T., Miyazaki M., Mino S., Toki T., Takai K., Sako Y., Sawabe T., Nakagawa S.. ( 2012;). Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. . Extremophiles 16:, 245–253. [CrossRef][PubMed]
    [Google Scholar]
  16. Janssen P. H.. ( 2006;). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. . Appl Environ Microbiol 72:, 1719–1728. [CrossRef][PubMed]
    [Google Scholar]
  17. Kishimoto N., Kosako Y., Tano T.. ( 1991;). Acidobacterium capsulatum gen. nov., sp. nov. an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. . Curr Microbiol 22:, 1–7. [CrossRef]
    [Google Scholar]
  18. Koch I. H., Gich F., Dunfield P. F., Overmann J.. ( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. . Int J Syst Evol Microbiol 58:, 1114–1122. [CrossRef][PubMed]
    [Google Scholar]
  19. Kulichevskaya I. S., Suzina N. E., Liesack W., Dedysh S. N.. ( 2010;). Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. . Int J Syst Evol Microbiol 60:, 301–306. [CrossRef][PubMed]
    [Google Scholar]
  20. Kulichevskaya I. S., Kostina L. A., Valásková V., Rijpstra W. I., Sinnighe Damsté J. S., de Boer W., Dedysh S. N.. ( 2012;). Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. . Int J Syst Evol Microbiol 62:, 1512–1520. [CrossRef][PubMed]
    [Google Scholar]
  21. Lee K. C., Dunfield P. F., Morgan X. C., Crowe M. A., Houghton K. M., Vyssotski M., Ryan J. L., Lagutin K., McDonald I. R., Stott M. B.. ( 2011;). Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. . Int J Syst Evol Microbiol 61:, 2482–2490. [CrossRef][PubMed]
    [Google Scholar]
  22. Liesack W., Bak F., Kreft J. U., Stackebrandt E.. ( 1994;). Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. . Arch Microbiol 162:, 85–90. [CrossRef][PubMed]
    [Google Scholar]
  23. López-García P., Duperron S., Philippot P., Foriel J., Susini J., Moreira D.. ( 2003;). Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. . Environ Microbiol 5:, 961–976. [CrossRef][PubMed]
    [Google Scholar]
  24. Losey N. A., Stevenson B. S., Busse H. J., Sinninghe Damsté J. S., Rijpstra W. I., Rudd S., Lawson P. A.. ( 2013;). Thermoanaerobaculum aquaticus, gen. nov., sp nov., the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. . Int J Syst Evol Microbiol. [CrossRef][PubMed]
    [Google Scholar]
  25. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  26. Okamura K., Kawai A., Yamada T., Hiraishi A.. ( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. . FEMS Microbiol Lett 317:, 138–142. [CrossRef][PubMed]
    [Google Scholar]
  27. Ostle A. G., Holt J. G.. ( 1982;). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. . Appl Environ Microbiol 44:, 238–241.[PubMed]
    [Google Scholar]
  28. Pankratov T. A., Dedysh S. N.. ( 2010;). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. . Int J Syst Evol Microbiol 60:, 2951–2959. [CrossRef][PubMed]
    [Google Scholar]
  29. Pankratov T. A., Kirsanova L. A., Kaparullina E. N., Kevbrin V. V., Dedysh S. N.. ( 2012;). Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria, and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. . Int J Syst Evol Microbiol 62:, 430–437. [CrossRef][PubMed]
    [Google Scholar]
  30. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  31. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  32. Sait M., Hugenholtz P., Janssen P. H.. ( 2002;). Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. . Environ Microbiol 4:, 654–666. [CrossRef][PubMed]
    [Google Scholar]
  33. Sinninghe Damsté J. S., Rijpstra W. I., Hopmans E. C., Weijers J. W., Foesel B. U., Overmann J., Dedysh S. N.. ( 2011;). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. . Appl Environ Microbiol 77:, 4147–4154. [CrossRef][PubMed]
    [Google Scholar]
  34. Soo R. M., Wood S. A., Grzymski J. J., McDonald I. R., Cary S. C.. ( 2009;). Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. . Environ Microbiol 11:, 715–728. [CrossRef][PubMed]
    [Google Scholar]
  35. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  36. Stott M. B., Crowe M. A., Mountain B. W., Smirnova A. V., Hou S., Alam M., Dunfield P. F.. ( 2008;). Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. . Environ Microbiol 10:, 2030–2041. [CrossRef][PubMed]
    [Google Scholar]
  37. Svetashev V. I., Vysotskii M. V., Ivanova E. P., Mikhailov V. V.. ( 1995;). Cellular fatty acids of Alteromonas species. . Syst Appl Microbiol 18:, 37–43. [CrossRef]
    [Google Scholar]
  38. Vyssotski M., Lee K. C., Lagutin K., Ryan J., Morgan X. C., Stott M. B.. ( 2011;). Fatty Acids of Chthonomonas calidirosea, of a novel class Chthonomonadetes from a recently described phylum Armatimonadetes. . Lipids 46:, 1155–1161. [CrossRef][PubMed]
    [Google Scholar]
  39. Zimmermann J., Gonzalez J. M., Saiz-Jimenez C., Ludwig W.. ( 2005;). Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in altamira cave using 23S rRNA sequence analyses. . Geomicrobiol J 22:, 379–388. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055079-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055079-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error