1887

Abstract

A novel butyrate-producing bacterium, strain 1y-2, was isolated from a stool sample of a 1-year-old, healthy Dutch infant. The isolate was obtained by using lactate and acetate as sources of carbon and energy. The strain was Gram-variable, strictly anaerobic and spore-forming and formed curly rod-shaped cells that fermented glucose into butyrate, lactate, formate and acetate as main products. The DNA G+C content of the strain was 44.5 mol% and its major cellular fatty acids were C, iso-C I and C. Strain 1y-2 was related to DSM 14662 based on 16S rRNA gene sequence analysis, with 3 % divergence, but hybridization studies of their genomic DNA revealed only 33 % relatedness. Moreover, strain 1y-2 showed marked physiological and biochemical differences from known species of the genus . Based on phylogenetic, chemotypic and phenotypic criteria, we propose that strain 1y-2 should be classified in the genus within a novel species, sp. nov. The type strain is 1y-2 ( = DSM 26241 = KCTC 15316).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.055061-0
2014-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/787.html?itemId=/content/journal/ijsem/10.1099/ijs.0.055061-0&mimeType=html&fmt=ahah

References

  1. Allen-Vercoe E., Daigneault M., White A., Panaccione R., Duncan S. H., Flint H. J., O’Neal L., Lawson P. A.. ( 2012;). Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota; reclassification of Eubacterium hadrum Moore et al. 1976. . Anaerobe 18:, 523–529. [CrossRef][PubMed]
    [Google Scholar]
  2. Barcenilla A., Pryde S. E., Martin J. C., Duncan S. H., Stewart C. S., Henderson C., Flint H. J.. ( 2000;). Phylogenetic relationships of butyrate-producing bacteria from the human gut. . Appl Environ Microbiol 66:, 1654–1661. [CrossRef][PubMed]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. Duncan S. H., Louis P., Flint H. J.. ( 2004;). Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. . Appl Environ Microbiol 70:, 5810–5817. [CrossRef][PubMed]
    [Google Scholar]
  6. Eeckhaut V., Van Immerseel F., Pasmans F., De Brandt E., Haesebrouck F., Ducatelle R., Vandamme P.. ( 2010;). Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. . Int J Syst Evol Microbiol 60:, 1108–1112. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies – an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Flint H. J., Scott K. P., Duncan S. H., Louis P., Forano E.. ( 2012a;). Microbial degradation of complex carbohydrates in the gut. . Gut Microbes 3:, 289–306. [CrossRef][PubMed]
    [Google Scholar]
  9. Flint H. J., Scott K. P., Louis P., Duncan S. H.. ( 2012b;). The role of the gut microbiota in nutrition and health. . Nat Rev Gastroenterol Hepatol 9:, 577–589. [CrossRef][PubMed]
    [Google Scholar]
  10. Hague A., Singh B., Paraskeva C.. ( 1997;). Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. . Gastroenterology 112:, 1036–1040. [CrossRef][PubMed]
    [Google Scholar]
  11. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. London:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  14. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  15. Levine U. Y., Looft T., Allen H. K., Stanton T. B.. ( 2013;). Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract. . Appl Environ Microbiol 79:, 3879–3881. [CrossRef][PubMed]
    [Google Scholar]
  16. Louis P., Duncan S. H., McCrae S. I., Millar J., Jackson M. S., Flint H. J.. ( 2004;). Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. . J Bacteriol 186:, 2099–2106. [CrossRef][PubMed]
    [Google Scholar]
  17. Louis P., Young P., Holtrop G., Flint H. J.. ( 2010;). Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA : acetate CoA-transferase gene. . Environ Microbiol 12:, 304–314. [CrossRef][PubMed]
    [Google Scholar]
  18. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  19. Muñoz-Tamayo R., Laroche B., Walter É., Doré J., Duncan S. H., Flint H. J., Leclerc M.. ( 2011;). Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. . FEMS Microbiol Ecol 76:, 615–624. [CrossRef][PubMed]
    [Google Scholar]
  20. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H.. ( 1996;). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. . J Bacteriol 178:, 5636–5643.[PubMed]
    [Google Scholar]
  21. Plugge C. M., Zoetendal E. G., Stams A. J. M.. ( 2000;). Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. . Int J Syst Evol Microbiol 50:, 1155–1162. [CrossRef][PubMed]
    [Google Scholar]
  22. Pryde S. E., Duncan S. H., Hold G. L., Stewart C. S., Flint H. J.. ( 2002;). The microbiology of butyrate formation in the human colon. . FEMS Microbiol Lett 217:, 133–139. [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Schwiertz A., Hold G. L., Duncan S. H., Gruhl B., Collins M. D., Lawson P. A., Flint H. J., Blaut M.. ( 2002;). Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. . Syst Appl Microbiol 25:, 46–51. [CrossRef][PubMed]
    [Google Scholar]
  25. Stams A. J. M., Van Dijk J. B., Dijkema C., Plugge C. M.. ( 1993;). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. . Appl Environ Microbiol 59:, 1114–1119.[PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  28. van Gelder A. H., Aydin R., Alves M. M., Stams A. J. M.. ( 2012;). 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. . Microb Biotechnol 5:, 573–578. [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.055061-0
Loading
/content/journal/ijsem/10.1099/ijs.0.055061-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error