1887

Abstract

Strain CH15-11, isolated from a sediment sample taken from Daechung Reservoir, South Korea, during the late-blooming period of cyanobacteria, was found to be a Gram-stain-negative, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain CH15-11 grew optimally at pH 7 and 28–30 °C. According to a phylogenetic tree based on 16S rRNA gene sequences, strain CH15-11 belonged to the genus and clustered with Dae 20, with which it shared the highest 16S rRNA gene sequence similarity (97.6 %). Chemotaxonomic analysis showed that strain CH15-11 had characteristics typical of members of the genus , such as the presence of sphingoglycolipid, ubiquinone Q-10 and -homospermidine. Plus, strain CH15-11 included summed feature 8 (Cω7 and/or Cω6) and C as the major fatty acids. The genomic DNA G+C content was 65.6 mol%. Sequence data showed that strain CH15-11 was most closely related to Dae 20 (97.6 %), Gsoil 634 (97.2 %) and TDMA-16 (97.0 %). However, the DNA–DNA relatedness values between strain CH15-11 and the most closely related type strains were within a range of 35–59 %. Thus, based on the phylogenetic, phenotypic and genetic data, strain CH15-11 was classified as a member of the genus as a representative of a novel species, for which the name sp. nov. is proposed. The type strain is CH15-11 ( = KCTC 23718 = JCM 17887).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.054510-0
2014-04-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1412.html?itemId=/content/journal/ijsem/10.1099/ijs.0.054510-0&mimeType=html&fmt=ahah

References

  1. An D. S., Liu Q. M., Lee H. G., Jung M. S., Kim S. C., Lee S. T., Im W. T.. ( 2013;). Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov.. Int J Syst Evol Microbiol 63:, 496–501. [CrossRef][PubMed]
    [Google Scholar]
  2. Asker D., Beppu T., Ueda K.. ( 2007a;). Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. . FEMS Microbiol Lett 273:, 140–148. [CrossRef][PubMed]
    [Google Scholar]
  3. Asker D., Beppu T., Ueda K.. ( 2007b;). Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. . Int J Syst Evol Microbiol 57:, 1435–1441. [CrossRef][PubMed]
    [Google Scholar]
  4. Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1995;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  5. Busse H. J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P.. ( 2003;). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. . Int J Syst Evol Microbiol 53:, 1253–1260. [CrossRef][PubMed]
    [Google Scholar]
  6. Chung E. J., Jo E. J., Yoon H. S., Song G. C., Jeon C. O., Chung Y. R.. ( 2011;). Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). . Int J Syst Evol Microbiol 61:, 2389–2394. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Gomori G.. ( 1955;). Preparation of buffer for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  12. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  13. Huang H. D., Wang W., Ma T., Li G. Q., Liang F. L., Liu R. L.. ( 2009;). Sphingomonas sanxanigenens sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 719–723. [CrossRef][PubMed]
    [Google Scholar]
  14. Huy H., Jin L., Lee Y. K., Lee K. C., Lee J. S., Yoon J. H., Ahn C. Y., Oh H. M.. ( 2013;). Arenimonas daechungensis sp. nov., isolated from the sediment of a eutrophic reservoir. . Int J Syst Evol Microbiol 63:, 484–489. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim S. G., Rhee S. K., Ahn C. Y., Ko S. R., Choi G. G., Bae J. W., Park Y. H., Oh H. M.. ( 2006;). Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. . Appl Environ Microbiol 72:, 3252–3258. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim M. K., Schubert K., Im W. T., Kim K. H., Lee S. T., Overmann J.. ( 2007;). Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. . Int J Syst Evol Microbiol 57:, 1527–1534. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  19. Komagata K., Suzuki K.. ( 1987;). Lipids and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–203. [CrossRef]
    [Google Scholar]
  20. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  21. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  22. Margesin R., Zhang D. C., Busse H. J.. ( 2012;). Sphingomonas alpina sp. nov., a psychrophilic bacterium isolated from alpine soil. . Int J Syst Evol Microbiol 62:, 1558–1563. [CrossRef][PubMed]
    [Google Scholar]
  23. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  24. Oh H. M., Lee S. J., Kim J. H., Kim H. S., Yoon B. D.. ( 2001;). Seasonal variation and indirect monitoring of microcystin concentrations in Daechung reservoir, Korea. . Appl Environ Microbiol 67:, 1484–1489. [CrossRef][PubMed]
    [Google Scholar]
  25. Oh H.-M., Ahn C.-Y., Lee J.-W., Chon T.-S., Choi K. H., Park Y.-S.. ( 2007;). Community patterning and identification of predominant factors in algal bloom in Daechung reservoir (Korea) using artificial neural networks. . Ecol Modell 203:, 109–118. [CrossRef]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  28. Srinivasan S., Lee J. J., Kim M. K.. ( 2011;). Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov., rosy colored β-glucosidase-producing bacteria isolated from soil. . J Microbiol 49:, 610–616. [CrossRef][PubMed]
    [Google Scholar]
  29. Taibi G., Schiavo M. R., Gueli M. C., Calanni Rindina P., Muratore R., Nicotra C. M. A.. ( 2000;). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. . J Chromatogr B Biomed Sci Appl 745:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  30. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  31. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  32. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  35. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34:, 99–119. [CrossRef][PubMed]
    [Google Scholar]
  36. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K.. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52:, 1485–1496. [CrossRef][PubMed]
    [Google Scholar]
  37. Yi T. H., Han C. K., Srinivasan S., Lee K. J., Kim M. K.. ( 2010;). Sphingomonas humi sp. nov., isolated from soil. . J Microbiol 48:, 165–169. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang J. Y., Liu X. Y., Liu S. J.. ( 2010;). Sphingomonas changbaiensis sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 790–795. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.054510-0
Loading
/content/journal/ijsem/10.1099/ijs.0.054510-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error