1887

Abstract

A moderately thermophilic, methanol-oxidizing bacterium (strain Gela4) was isolated from methane-utilizing mixed-culture originating from marine sediment near a hydrothermal vent. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain Gela4 was closely related to members of the genus ‘’ (94.7 % similarity) within the class . Strain Gela4 was a Gram‐staining‐negative and aerobic organism. Cells were rod-shaped and non-motile. The temperature range for growth of strain Gela4 was 19–43 °C (optimal growth at 35 °C). Strain Gela4 tolerated up to 9 % NaCl with an optimum at 1 %. The organism was a facultative methylotroph that could utilize methanol, methylamine, trimethylamine and a variety of multi-carbon compounds. The major cellular fatty acid and major respiratory quinone were Cω7 and ubiquinone-10, respectively. The predominant phospholipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 63.9 mol%. On the basis of the morphological, physiological, biochemical and genetic information, a novel genus and species, is proposed, with Gela4 ( = NBRC 109540 = DSM 27242) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053397-0
2014-02-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/462.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053397-0&mimeType=html&fmt=ahah

References

  1. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bowman J. P. . ( 2006; ). The Methanotrophs – The families Methylococcaceae and Methylocystaceae . . In The Prokaryotes, vol. 5, pp. 266–289. Edited by Dworkin M. , Falko S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  3. De Zwart J. M. M. , Nelisse P. N. , Kuenen J. G. . ( 1996; ). Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. . FEMS Microbiol Ecol 20:, 261–270. [CrossRef]
    [Google Scholar]
  4. Doronina N. V. , Trotsenko Y. A. , Tourova T. P. . ( 2000; ). Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. . Int J Syst Evol Microbiol 50:, 1849–1859.[PubMed]
    [Google Scholar]
  5. Doronina N. V. , Poroshina M. N. , Kaparullina E. N. , Ezhov V. A. , Trotsenko Y. A. . ( 2013; ). Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligately methylotrophic bacteria isolated from the Ural saline environments. . Syst Appl Microbiol 36:, 148–154. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  7. Garrity G. M. , Bell J. A. , Lilburn T. . ( 2005; ). Family VIII. Hyphomicrobiaceae Babudieri 1950, 589. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, p. 476. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  8. Goldfine H. , Hagen P.-O. . ( 1968; ). N-Methyl groups in bacterial lipids. 3. Phospholipids of hyphomicrobia. . J Bacteriol 95:, 367–375.[PubMed]
    [Google Scholar]
  9. Hanada S. , Takaichi S. , Matsuura K. , Nakamura K. . ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. . Int J Syst Evol Microbiol 52:, 187–193.[PubMed] [CrossRef]
    [Google Scholar]
  10. Holmes A. J. , Kelly D. P. , Baker S. C. , Thompson A. S. , De Marco P. , Kenna E. M. , Murrell J. C. . ( 1997; ). Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. . Arch Microbiol 167:, 46–53. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ishibashi J.-I. , Nakaseama M. , Seguchi M. , Yamashita T. , Doi S. , Sakamoto T. , Shimada K. , Shimada N. , Noguchi T. . & other authors ( 2008; ). Marine shallow-water hydrothermal activity and mineralization at the Wakamiko Crater in Kagoshima Bay, South Kyushu, Japan. . J Volcanol Geotherm Res 173:, 84–98. [CrossRef]
    [Google Scholar]
  12. Janvier M. , Frehel C. , Grimont F. , Gasser F. . ( 1985; ). Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. . Int J Syst Bacteriol 35:, 131–139. [CrossRef]
    [Google Scholar]
  13. Jobb G. , von Haeseler A. , Strimmer K. . ( 2004; ). treefinder: a powerful graphical analysis environment for molecular phylogenetics. . BMC Evol Biol 4:, 18. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kamagata Y. , Mikami E. . ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol 41:, 191–196. [CrossRef]
    [Google Scholar]
  15. Katsuyama C. , Kondo N. , Suwa Y. , Yamagishi T. , Itoh M. , Ohte N. , Kimura H. , Nagaosa K. , Kato K. . ( 2008; ). Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest. . Microbes Environ 23:, 337–345. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim H. G. , Doronina N. V. , Trotsenko Y. A. , Kim S. W. . ( 2007; ). Methylophaga aminisulfidivorans sp. nov., a restricted facultatively methylotrophic marine bacterium. . Int J Syst Evol Microbiol 57:, 2096–2101. [CrossRef] [PubMed]
    [Google Scholar]
  17. Nichols B. W. , James A. T. . ( 1964; ). The lipids of plant storage tissue. . Fette Seifen Anstrichmittel 66:, 1003–1006. [CrossRef]
    [Google Scholar]
  18. Pruesse E. , Quast C. , Knittel K. , Fuchs B. M. , Ludwig W. , Peplies J. , Glöckner F. O. . ( 2007; ). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . . Nucleic Acids Res 35:, 7188–7196. [CrossRef] [PubMed]
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Schloss P. D. , Westcott S. L. , Ryabin T. , Hall J. R. , Hartmann M. , Hollister E. B. , Lesniewski R. A. , Oakley B. B. , Parks D. H. . & other authors ( 2009; ). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef] [PubMed]
    [Google Scholar]
  21. Spiekermann P. , Rehm B. H. A. , Kalscheuer R. , Baumeister D. , Steinbüchel A. . ( 1999; ). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. . Arch Microbiol 171:, 73–80. [CrossRef] [PubMed]
    [Google Scholar]
  22. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  23. Yamanaka T. , Maeto K. , Akashi H. , Ishibashi J.-I. , Miyoshi Y. , Okamura K. , Noguchi T. , Kuwahara Y. , Toki T. . & other authors ( 2013; ). Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan. . J Volcanol Geotherm Res 258:, 74–84. [CrossRef]
    [Google Scholar]
  24. Yoshinaga I. , Amano T. , Yamagishi T. , Okada K. , Ueda S. , Sako Y. , Suwa Y. . ( 2011; ). Distribution and diversity of anaerobic ammonium oxidation (anammox) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan. . Microbes Environ 26:, 189–197. [CrossRef] [PubMed]
    [Google Scholar]
  25. Zhang H. , Hanada S. , Shigematsu T. , Shibuya K. , Kamagata Y. , Kanagawa T. , Kurane R. . ( 2000; ). Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. . Int J Syst Evol Microbiol 50:, 743–749. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053397-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053397-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error