1887

Abstract

Several closely related, thermophilic and cellulolytic bacterial strains, designated JKG1, JKG2, JKG3, JKG4 and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1 had cells of diameter 0.7–0.9 µm and length ~2.0 µm that formed non-branched, multicellular filaments reaching >300 µm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45–65 °C, with an optimum of 55 °C. The pH range for growth was pH 5.6–9.0, with an optimum of pH 7.5. JKG1 grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, CM-cellulose, filter paper, microcrystalline cellulose, xylan, starch, Casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class , but distant from other cultivated members, with the highest sequence identity of 82.5 % to . The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5 %) were C, anteiso-C, iso-C, iso-C, C, iso-C and C. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose and xylose. Morphological, phylogenetic and chemotaxonomic results suggest that JKG1 is representative of a new lineage within the class , which we propose to designate gen. nov., sp. nov., fam. nov., ord. nov. The type strain of gen. nov., sp. nov. is JKG1 ( = DSM 26889 = JCM 19132).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.053348-0
2013-12-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4675.html?itemId=/content/journal/ijsem/10.1099/ijs.0.053348-0&mimeType=html&fmt=ahah

References

  1. Balch W. E. , Fox G. E. , Magrum L. J. , Woese C. R. , Wolfe R. S. . ( 1979; ). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  2. Berg I. A. , Keppen O. I. , Krasil’nikova E. N. , Ugol’kova N. V. , Ivanovskiľ R. N. . ( 2005; ). [Carbon metabolism of filamentous anoxygenic phototrophic bacteria of the family Oscillochloridaceae.]. . Mikrobiologiia 74:, 305–312 (in Russian).[PubMed]
    [Google Scholar]
  3. Castenholz R. W. . ( 1969; ). Thermophilic blue-green algae and the thermal environment. . Bacteriol Rev 33:, 476–504.[PubMed]
    [Google Scholar]
  4. Cavaletti L. , Monciardini P. , Bamonte R. , Schumann P. , Rohde M. , Sosio M. , Donadio S. . ( 2006; ). New lineage of filamentous, spore-forming, gram-positive bacteria from soil. . Appl Environ Microbiol 72:, 4360–4369. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cole J. K. , Peacock J. P. , Dodsworth J. A. , Williams A. J. , Thompson D. B. , Dong H. , Wu G. , Hedlund B. P. . ( 2013; ). Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. . ISME J 7:, 718–729. [CrossRef] [PubMed]
    [Google Scholar]
  6. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  7. Costa K. C. , Navarro J. B. , Shock E. L. , Zhang C. L. , Soukup D. , Hedlund B. P. . ( 2009; ). Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. . Extremophiles 13:, 447–459. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dodsworth J. A. , Hungate B. , de la Torre J. R. , Jiang H. , Hedlund B. P. . ( 2011; ). Measuring nitrification, denitrification, and related biomarkers in terrestrial geothermal ecosystems. . Methods Enzymol 486:, 171–203. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dodsworth J. A. , Blainey P. C. , Murugapiran S. K. , Swingley W. D. , Ross C. A. , Tringe S. G. , Chain P. S. G. , Scholz M. B. , Lo C. C. . & other authors ( 2013; ). Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. . Nat Commun 4:, 1854. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dubinina G. , Gorlenko V. . ( 1975; ). New filamentous photosynthesizing green bacteria with gas vacuoles. . Microbiology (English translation of Mikrobiologiia) 44:, 452–458.
    [Google Scholar]
  11. Eder W. , Ludwig W. , Huber R. . ( 1999; ). Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. . Arch Microbiol 172:, 213–218. [CrossRef] [PubMed]
    [Google Scholar]
  12. Eder W. , Jahnke L. L. , Schmidt M. , Huber R. . ( 2001; ). Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. . Appl Environ Microbiol 67:, 3077–3085. [CrossRef] [PubMed]
    [Google Scholar]
  13. Felsenstein J. . ( 2005; ). phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  14. Garrity G. M. , Holt J. G. . ( 2001; ). Phylum BVI. Chloroflexi phy. nov. . In Bergey’s Manual of Systematic Bacteriology , , 2nd edn., vol. 1:, The Archaea and the Deeply Branching and Phototrophic Bacteria, pp. 427–446. Edited by Boone D. R. , Castenholz R. W. , Garrity G. M. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  15. Hall T. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  16. Hanada S. , Takaichi S. , Matsuura K. , Nakamura K. . ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. . Int J Syst Evol Microbiol 52:, 187–193.[PubMed] [CrossRef]
    [Google Scholar]
  17. Holt J. G. , Lewin R. A. . ( 1968; ). Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. . J Bacteriol 95:, 2407–2408.[PubMed]
    [Google Scholar]
  18. Huson D. H. , Richter D. C. , Rausch C. , Dezulian M. F. , Rupp R. . ( 2007; ). Dendroscope: an interactive viewer for large phylogenetic trees. . BMC Bioinformatics 22:, 460. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jürgens U. J. , Meißner J. , Fischer U. , König W. A. , Weckesser J. . ( 1987; ). Ornithine as a constituent of the peptidoglycan of Chloroflexus aurantiacus, diaminopimelic acid in that of Chlorobium vibrioforme f. thiosulfatophilum . . Arch Microbiol 148:, 72–76. [CrossRef]
    [Google Scholar]
  20. Jürgens U. J. , Meissner J. , Reichenbach H. , Weckesser J. . ( 1989; ). l-Ornithine containing peptidoglycan-polysaccharide complex from the cell wall of the gliding bacterium Herpetosiphon aurantiacus . . FEMS Microbiol Lett 60:, 247–250. [CrossRef]
    [Google Scholar]
  21. Keppen O. , Baulina O. , Kondratieva E. . ( 1994; ). Oscillochloris trichoides neotype strain DG-6. . Photosynth Res 41:, 29–33. [CrossRef]
    [Google Scholar]
  22. Kiss H. , Nett M. , Domin N. , Martin K. , Maresca J. A. , Copeland A. , Lapidus A. , Lucas S. , Berry K. W. . & other authors ( 2011; ). Complete genome sequence of the filamentous gliding predatory bacterium Herpetosiphon aurantiacus type strain (114-95T). . Stand Genomic Sci 5:, 356–370. [CrossRef] [PubMed]
    [Google Scholar]
  23. Knudsen E. , Jantzen E. , Bryn K. , Ormerod J. G. , Sirevåg R. . ( 1982; ). Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus . . Arch Microbiol 132:, 149–154. [CrossRef]
    [Google Scholar]
  24. Konstantinidis K. T. , Tiedje J. M. . ( 2005; ). Towards a genome-based taxonomy for prokaryotes. . J Bacteriol 187:, 6258–6264. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lane D. J. . ( 1991; ). Nucleic acid techniques in bacterial systematics. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–174. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  26. Lasher C. , Dyszynski G. , Everett K. , Edmonds J. , Ye W. , Sheldon W. , Wang S. , Joye S. B. , Moran M. A. , Whitman W. B. . ( 2009; ). The diverse bacterial community in intertidal, anaerobic sediments at Sapelo Island, Georgia. . Microb Ecol 58:, 244–261. [CrossRef]
    [Google Scholar]
  27. Leboffe M. J. , Pierce B. E. . ( 2006; ). Microbiology: Laboratory Theory and Application, , 2nd edn.. Englewood, CO:: Morton Publishing;.
    [Google Scholar]
  28. Lee N. , Reichenbach H. . ( 2006; ). The Genus Herpetosiphon . . In The Prokaryotes, pp. 854–877. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K.-H. , Stackebrandt E. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  29. Lewin R. A. . ( 1970; ). New Herpetosiphon species (Flexibacterales). . Can J Microbiol 16:, 517–520. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mesbah M. , Premachandran U. , Whitman W. . ( 1989; ). Precise management of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  31. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  32. Peacock J. P. , Cole J. K. , Murugapiran S. K. , Dodsworth J. A. , Fisher J. C. , Moser D. P. , Hedlund B. P. . ( 2013; ). Pyrosequencing reveals high-temperature cellulolytic microbial consortia in Great Boiling Spring after in situ lignocellulose enrichment. . PLoS ONE 8:, e59927. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pierson B. K. , Castenholz R. W. . ( 1974; ). A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov.. Arch Microbiol 100:, 5–24. [CrossRef] [PubMed]
    [Google Scholar]
  34. Pierson B. K. , Giovannoni S. J. , Stahl D. A. , Castenholz R. W. . ( 1985; ). Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a . . Arch Microbiol 142:, 164–167. [CrossRef] [PubMed]
    [Google Scholar]
  35. Reasoner D. J. , Geldreich E. E. . ( 1985; ). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  36. Sasser M. . ( 2006; ). Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). . Technical note #101. Newark, DE:: MIDI Inc;.
  37. Schleifer K. H. . ( 1985; ). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  38. Schloss P. D. , Westcott S. L. , Ryabin T. , Hall J. R. , Hartmann M. , Hollister E. B. , Lesniewski R. A. , Oakley B. B. , Parks D. H. . & other authors ( 2009; ). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef] [PubMed]
    [Google Scholar]
  39. Schmitt S. , Tsai P. , Bell J. , Fromont J. , Ilan M. , Lindquist N. , Perez T. , Rodrigo A. , Schupp P. J. . & other authors ( 2012; ). Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. . ISME J 6:, 564–576. [CrossRef] [PubMed]
    [Google Scholar]
  40. Schwertmann U. , Cornell R. M. . ( 2000; ). Iron Oxides in the Laboratory, Preparation and Characterization, , 2nd edn.. Weinheim:: Wiley;. [CrossRef]
    [Google Scholar]
  41. Sutcliffe I. C. . ( 2010; ). A phylum level perspective on bacterial cell envelope architecture. . Trends Microbiol 18:, 464–470. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sutcliffe I. C. . ( 2011; ). Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. . Environ Microbiol 13:, 279–282. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tamaoka J. , Katayama-Fujimura Y. , Kuraishi H. . ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Microbiol 54:, 31–36. [CrossRef]
    [Google Scholar]
  44. Tang S.-K. , Wang Y. , Chen Y. , Lou K. , Cao L.-L. , Xu L.-H. , Li W.-J. . ( 2009; ). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . . Int J Syst Evol Microbiol 59:, 2025–2032. [CrossRef] [PubMed]
    [Google Scholar]
  45. Webster N. S. , Taylor M. W. , Behnam F. , Lücker S. , Rattei T. , Whalan S. , Horn M. , Wagner M. . ( 2010; ). Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. . Environ Microbiol 12:, 2070–2082.[PubMed]
    [Google Scholar]
  46. Yabe S. , Aiba Y. , Sakai Y. , Hazaka M. , Yokota A. . ( 2010; ). Thermosporothrix hazakensis gen. nov., sp. nov., isolated from compost, description of Thermosporotrichaceae fam. nov. within the class Ktedonobacteria Cavaletti et al. 2007 and emended description of the class Ktedonobacteria . . Int J Syst Evol Microbiol 60:, 1794–1801. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yabe S. , Aiba Y. , Sakai Y. , Hazaka M. , Yokota A. . ( 2011; ). Thermogemmatispora onikobensis gen. nov., sp. nov. and Thermogemmatispora foliorum sp. nov., isolated from fallen leaves on geothermal soils, and description of Thermogemmatisporaceae fam. nov. and Thermogemmatisporales ord. nov. within the class Ktedonobacteria . . Int J Syst Evol Microbiol 61:, 903–910. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yamada T. , Sekiguchi Y. , Hanada S. , Imachi H. , Ohashi A. , Harada H. , Kamagata Y. . ( 2006; ). Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi . . Int J Syst Evol Microbiol 56:, 1331–1340. [CrossRef] [PubMed]
    [Google Scholar]
  49. Youssef N. H. , Blainey P. C. , Quake S. R. , Elshahed M. S. . ( 2011; ). Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). . Appl Environ Microbiol 77:, 7804–7814. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.053348-0
Loading
/content/journal/ijsem/10.1099/ijs.0.053348-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error