1887

Abstract

Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus , previously the complex ( ), on the basis of production of a PCR product with the primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of , showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus . The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as , , , , , , , and Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA–DNA hybridization studies, showed that although related to , these isolates represent a novel species within the genus , for which the name sp. nov. (type strain IPO 2222 = LMG25993 = NCPPB4479) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052944-0
2014-03-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/768.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052944-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E.. ( 1999;). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. . Proc Natl Acad Sci U S A 96:, 14043–14048. [CrossRef][PubMed]
    [Google Scholar]
  2. Brady C. L., Cleenwerck I., Denman S., Venter S. N., Rodríguez-Palenzuela P., Coutinho T. A., De Vos P.. ( 2012;). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. . Int J Syst Evol Microbiol 62:, 1592–1602. [CrossRef][PubMed]
    [Google Scholar]
  3. Burkholder W. H., MacFadden L. H., Dimock A. H.. ( 1953;). A bacterial blight of chrysanthemums. . Phytopathology 43:, 522–525.
    [Google Scholar]
  4. Catara V., Sutra L., Morineau A., Achouak W., Christen R., Gardan L.. ( 2002;). Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp. nov.. Int J Syst Evol Microbiol 52:, 1749–1758. [CrossRef][PubMed]
    [Google Scholar]
  5. Czajkowski R., de Boer W. J., van Veen J. A., van der Wolf J. M.. ( 2012;). Characterization of bacterial isolates from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta. . Plant Pathol 61:, 169–182. [CrossRef]
    [Google Scholar]
  6. de Freitas Neto O. C., Setta A., Imre A., Bukovinski A., Elazomi A., Kaiser P., Berchieri A. Jr., Barrow P., Jones M.. ( 2013;). A flagellated motile Salmonella Gallinarum mutant (SG Fla+) elicits a pro-inflammatory response from avian epithelial cells and macrophages and is less virulent to chickens. . Vet Microbiol 165:, 425–433. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Fessehaie A., De Boer S. H., Lévesque C. A.. ( 2002;). Molecular characterization of DNA encoding 16S-23S rRNA intergenic spacer regions and 16S rRNA of pectolytic Erwinia species. . Can J Microbiol 48:, 387–398. [CrossRef][PubMed]
    [Google Scholar]
  9. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P.. & other authors ( 2005;). Opinion: Re-evaluating prokaryotic species. . Nat Rev Microbiol 3:, 733–739. [CrossRef][PubMed]
    [Google Scholar]
  10. Godoy D., Randle G., Simpson A. J., Aanensen D. M., Pitt T. L., Kinoshita R., Spratt B. G.. ( 2003;). Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. . J Clin Microbiol 41:, 2068–2079. [CrossRef][PubMed]
    [Google Scholar]
  11. Hauben L., Moore E. R., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J.. ( 1998;). Phylogenetic position of phytopathogens within the Enterobacteriaceae. . Syst Appl Microbiol 21:, 384–397. [CrossRef][PubMed]
    [Google Scholar]
  12. Hyman L. J., Toth I. K., Pérombelon M. C. M.. ( 1998;). Isolation and identification. . In Methods for the Detection and Quantification of Erwinia Carotovora subsp Atroseptica on Potatoes, pp. 60–65. Edited by Perombelon M. C. M., van der Wolf J. M... Dundee:: Scottish Crop Research Institute;.
    [Google Scholar]
  13. Kleitman F., Barash I., Burger A., Iraki N., Falah Y., Sessa G., Weinthal D., Chalupowicz L., Gartemann K.-H.. & other authors ( 2008;). Characterization of a Clavibacter michiganensis subsp. michiganensis population in Israel. . Eur J Plant Pathol 121:, 463–475. [CrossRef]
    [Google Scholar]
  14. Kolstø A. B., Tourasse N. J., Økstad O. A.. ( 2009;). What sets Bacillus anthracis apart from other Bacillus species?. Annu Rev Microbiol 63:, 451–476. [CrossRef][PubMed]
    [Google Scholar]
  15. Kurtz S., Phillippy A. L., Delcher A. L., Smoot M., Shumway M., Antonescu C., Salzberg S. L.. ( 2004;). Versatile and open software for comparing large genomes. . Genome Biol 5:, R12. [CrossRef][PubMed]
    [Google Scholar]
  16. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  17. Laurila J., Ahola V., Lehtinen A., Joutsjoki T., Hannukkala A., Rahkonen A., Pirhonen M.. ( 2008;). Characterization of Dickeya strains isolated from potato and river water samples in Finland. . Eur J Plant Pathol 122:, 213–225. [CrossRef]
    [Google Scholar]
  18. Lelliott R. A., Dickey R. S.. ( 1984;). Genus VII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920, 209AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1. pp 469–476. Edited by Krieg N. R., Holt J. G.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  19. Nassar A., Darrasse A., Lemattre M., Kotoujansky A., Dervin C., Vedel R., Bertheau Y.. ( 1996;). Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. . Appl Environ Microbiol 62:, 2228–2235.[PubMed]
    [Google Scholar]
  20. Ngwira N., Samson R.. ( 1990;). Erwinia chrysanthemi: description of two new biovars (bv 8 and bv 9) isolated from kalanchoe and maize host plants. . Agronomie 10:, 341–345. [CrossRef]
    [Google Scholar]
  21. Parkinson N., Stead D., Bew J., Heeney J., Tsror (Lahkim) L., Elphinstone J.. ( 2009;). Dickeya species relatedness and clade structure determined by comparison of recA sequences. . Int J Syst Evol Microbiol 59:, 2388–2393. [CrossRef][PubMed]
    [Google Scholar]
  22. Rezzonico F., Vogel G., Duffy B., Tonolla M.. ( 2010;). Application of whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification and clustering analysis of Pantoea species. . Appl Environ Microbiol 76:, 4497–4509. [CrossRef][PubMed]
    [Google Scholar]
  23. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  24. Rogul M., Brendle J. J., Haapala D. K., Alexander A. D.. ( 1970;). Nucleic acid similarities among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei. . J Bacteriol 101:, 827–835.[PubMed]
    [Google Scholar]
  25. Samson R., Nassan-Agha N.. ( 1978;). Biovars and serovars among 129 strains of Erwinia chrysanthemi.. In Proceedings of 4th International Conference on Plant Pathogenic Bacteria, Angers;, pp. 547–553.
    [Google Scholar]
  26. Samson R., Poutier F., Sailly M., Jouan B.. ( 1987;). Caractérisation des Erwinia chrysanthemi isolées de Solanum tuberosum et d'autres plantes-hôtes selon les biovars et sérogroupes. . EPPO Bulletin 17:, 11–16. [CrossRef]
    [Google Scholar]
  27. Samson R., Legendre J. B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L.. ( 2005;). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.. Int J Syst Evol Microbiol 55:, 1415–1427. [CrossRef][PubMed]
    [Google Scholar]
  28. Sławiak M., van Beckhoven J. R. C. M., Speksnijder A. G. C. L., Czajkowski R., Grabe G., van der Wolf J. M.. ( 2009;). Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. . Eur J Plant Pathol 125:, 245–261. [CrossRef]
    [Google Scholar]
  29. Spratt B. G.. ( 2004;). Exploring the concept of clonality in bacteria. . Methods Mol Biol 266:, 323–352.[PubMed]
    [Google Scholar]
  30. Sreevatsan S., Pan X., Stockbauer K. E., Connell N. D., Kreiswirth B. N., Whittam T. S., Musser J. M.. ( 1997;). Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. . Proc Natl Acad Sci U S A 94:, 9869–9874. [CrossRef][PubMed]
    [Google Scholar]
  31. Stead D. E., Sellwood J. E., Wilson J., Viney I.. ( 1992;). Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. . J Appl Bacteriol 72:, 315–321. [CrossRef]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Tibayrenc M., Ayala F. J.. ( 2012;). Reproductive clonality of pathogens: a perspective on pathogenic viruses, bacteria, fungi, and parasitic protozoa. . Proc Natl Acad Sci U S A 109:, E3305–E3313. [CrossRef][PubMed]
    [Google Scholar]
  34. Toth I. K., van der Wolf J. M., Saddler G., Lojkowska E., Helias V., Pirhonen M., Tsror (Lakhim) L., Elphinstone J. G.. ( 2011;). Dickeya species: an emerging problem for potato production in Europe. . Plant Pathol 60:, 385–399. [CrossRef]
    [Google Scholar]
  35. van Doorn J., Vreeburg P. J. M., van Leeuwen P. J., Dees R. H. L.. ( 2011;). The presence and survival of soft rot (Erwinia) in flower bulb production systems. . Acta Hort (ISHS) 886:, 365–379.
    [Google Scholar]
  36. Van Vuurde J. W. L., Van den Bovenkamp G. W., Birnbaum Y.. ( 1983;). Immunofluorescence microscopy and enzyme linked immunosorbent assay as potential routine tests for the detection of Pseudomonas syringae pv. phaseolicola and Xanthomonas campestris pv. phaseoli in bean seed. . Seed Sci Technol 11:, 547–559.
    [Google Scholar]
  37. Vandroemme J., Cottyn B., Pothier J. F., Pflüger V., Duffy B., Maes M.. ( 2013;). Xanthomonas arboricola pv. fragariae: what’s in a name?. Plant Pathol 62:, 1123–1131. [CrossRef]
    [Google Scholar]
  38. Waleron M., Waleron K., Lojkowska E.. ( 2002a;). Genotypic characterisation of the Erwinia genus by PCR-RFLP analysis of rpoS gene. . Plant Protection Science 38:, 288–290.
    [Google Scholar]
  39. Waleron M., Waleron K., Podhajska A. J., Lojkowska E.. ( 2002b;). Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. . Microbiology 148:, 583–595.[PubMed]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  41. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology. pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Green Publishing and Wiley Interscience;.
    [Google Scholar]
  42. Young J. M., Dye D. W., Bradbury J. F., Panagopoulos C. G., Robbs C. F.. ( 1978;). A proposed nomenclature and classification for plant pathogenic bacteria. . NZ J Agric Res 21:, 153–175. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052944-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052944-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error