1887

Abstract

A Gram-stain-positive, aerobic, non-spore-forming, short-rod-shaped bacterium, designated strain MP203, was isolated from ice water of Midui Glacier in Tibet Autonomous Region, China. The strain was psychrotolerant, growing at 0–25 °C. 16S rRNA gene sequence analysis showed that strain MP203 was most similar to NBRC 103066, KACC 13354, KCTC 19311, CCTCC AB 209077 and JCM 18951, with similarities of 97.4, 97.2, 97.2, 97.1 and 97.1 %, respectively. The maximum-likelihood phylogenetic tree indicated that strain MP203 clustered with nine genera of the family , namely , , , , , , , and However, bootstrap analysis showed that there was no significance in the branching pattern of the linage comprising strain MP203 and any existing generic lineage of the family . DNA–DNA hybridization results indicated levels of relatedness between strain MP203 and CCTCC AB 209077, NBRC 103066, KCTC 19311, KACC 13354 and JCM 18951 were 25.8±7.3, 29.6±7.6, 19.7±6.7, 16.0±4.2 and 12.4±5.1 % (mean±), respectively. The G+C content of the genomic DNA was 64.1 mol%. Analysis of the cell-wall peptidoglycan revealed that the peptidoglycan structure of strain MP203 was B10 type with Gly[-Hse]–-Glu–-DAB, containing 2, 4-diaminobutyric acid (DAB) as a diagnostic amino acid. The cell-wall sugars were rhamnose, ribose, mannose and glucose. The major fatty acids were anteiso-C, iso-C and anteiso A-C. An unusual compound identified as anteiso-C-DMA (1, 1-dimethoxy-anteiso-pentadecane) was also present in strain MP203. The predominant menaquinone was MK-10. Diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one unknown glycolipid and four unknown lipids were detected in the polar lipid extracts. As strain MP203 was distinguishable from phylogenetically related genera in the family in terms of its physiological and chemotaxonomic characteristics and phylogenetic position, it was considered to represent a novel species of a new genus. Thus, the name gen. nov., sp. nov. is proposed. The type strain of is MP203 ( = CGMCC 1.12484 = KCTC 29148).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052670-0
2014-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/579.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052670-0&mimeType=html&fmt=ahah

References

  1. Baik K. S., Park S. C., Kim H. J., Lee K. H., Seong C. N.. ( 2010;). Chryseoglobus frigidaquae gen. nov., sp. nov., a novel member of the family Microbacteriaceae. . Int J Syst Evol Microbiol 60:, 1311–1316. [CrossRef][PubMed]
    [Google Scholar]
  2. Bajerski F., Ganzert L., Mangelsdorf K., Lipski A., Wagner D.. ( 2011;). Cryobacterium arcticum sp. nov., a psychrotolerant bacterium from an Arctic soil. . Int J Syst Evol Microbiol 61:, 1849–1853. [CrossRef][PubMed]
    [Google Scholar]
  3. Bendinger B., Kroppenstedt R. M., Klatte S., Altendorf K.. ( 1992;). Chemotaxonomic differentiation of coryneform bacteria isolated from biofilters. . Int J Syst Bacteriol 42:, 474–486. [CrossRef][PubMed]
    [Google Scholar]
  4. Cardinale M., Grube M., Berg G.. ( 2011;). Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. . Int J Syst Evol Microbiol 61:, 3033–3038. [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  6. Collins M. D., Bradbury J. F.. ( 1992;). The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium. . In The Prokaryotes, , 2nd edn., pp. 1355–1368. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;.
    [Google Scholar]
  7. Cook D. M., Henriksen E. D., Rogers T. E., Peterson J. D.. ( 2008;). Klugiella xanthotipulae gen. nov., sp. nov., a novel member of the family Microbacteriaceae. . Int J Syst Evol Microbiol 58:, 2779–2782. [CrossRef][PubMed]
    [Google Scholar]
  8. Dastager S. G., Lee J. C., Ju Y. J., Park D. J., Kim C. J.. ( 2008;). Frigoribacterium mesophilum sp. nov., a mesophilic actinobacterium isolated from Bigeum Island, Korea. . Int J Syst Evol Microbiol 58:, 1869–1872. [CrossRef][PubMed]
    [Google Scholar]
  9. Davis M. J., Gillaspie A. G., Vidaver A. K., Harris R. W.. ( 1984;). Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and Bermudagrass stunting disease. . Int J Syst Bacteriol 34:, 107–117. [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  11. Dorofeeva L. V., Evtushenko L. I., Krausova V. I., Karpov A. V., Subbotin S. A., Tiedje J. M.. ( 2002;). Rathayibacter caricis sp. nov. and Rathayibacter festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively. . Int J Syst Evol Microbiol 52:, 1917–1923. [CrossRef][PubMed]
    [Google Scholar]
  12. Evtushenko L. I., Dorofeeva L. V., Subbotin S. A., Cole J. R., Tiedje J. M.. ( 2000;). Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of ‘Corynebacterium aquaticum’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov.. Int J Syst Evol Microbiol 50:, 371–380. [CrossRef][PubMed]
    [Google Scholar]
  13. Evtushenko L. I., Dorofeeva L. V., Dobrovolskaya T. G., Streshinskaya G. M., Subbotin S. A., Tiedje J. M.. ( 2001;). Agreia bicolorata gen. nov., sp. nov., to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila. . Int J Syst Evol Microbiol 51:, 2073–2079. [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  16. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum changes for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  17. Greene A. C., Euzéby J. P., Tindall B. J., Patel B. K.. ( 2009;). Proposal of Frondihabitans gen. nov. to replace the illegitimate genus name Frondicola Zhang et al. 2007. . Int J Syst Evol Microbiol 59:, 447–448. [CrossRef][PubMed]
    [Google Scholar]
  18. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  19. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E.-L., Ulrych U., Busse H.-J., Weiss N., Mikkola R., Salkinoja-Salonen M.. ( 2000;). Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. . Int J Syst Evol Microbiol 50:, 355–363. [CrossRef][PubMed]
    [Google Scholar]
  20. Katayama T., Kato T., Tanaka M., Douglas T. A., Brouchkov A., Fukuda M., Tomita F., Asano K.. ( 2009;). Glaciibacter superstes gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from a permafrost ice wedge. . Int J Syst Evol Microbiol 59:, 482–486. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim S. J., Lee S. S.. ( 2011;). Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae. . Int J Syst Evol Microbiol 61:, 155–159. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim H., Park D. S., Oh H. W., Lee K. H., Chung D. H., Park H. Y., Park H. M., Bae K. S.. ( 2012a;). Gryllotalpicola gen. nov., with descriptions of Gryllotalpicola koreensis sp. nov., Gryllotalpicola daejeonensis sp. nov. and Gryllotalpicola kribbensis sp. nov. from the gut of the African mole cricket, Gryllotalpa africana, and reclassification of Curtobacterium ginsengisoli as Gryllotalpicola ginsengisoli comb. nov.. Int J Syst Evol Microbiol 62:, 2363–2370. [CrossRef][PubMed]
    [Google Scholar]
  23. Kim S. J., Tamura T., Hamada M., Ahn J. H., Weon H. Y., Park I. C., Suzuki K., Kwon S. W.. ( 2012b;). Compostimonas suwonensis gen. nov., sp. nov., isolated from spent mushroom compost. . Int J Syst Evol Microbiol 62:, 2410–2416. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee S. D.. ( 2007;). Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. . Int J Syst Evol Microbiol 57:, 2498–2502. [CrossRef][PubMed]
    [Google Scholar]
  25. Lee S. D.. ( 2010;). Frondihabitans peucedani sp. nov., an actinobacterium isolated from rhizosphere soil, and emended description of the genus Frondihabitans Greene et al. 2009. . Int J Syst Evol Microbiol 60:, 1740–1744. [CrossRef][PubMed]
    [Google Scholar]
  26. Li H. R., Yu Y., Luo W., Zeng Y. X.. ( 2010;). Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. . Int J Syst Evol Microbiol 60:, 2535–2539. [CrossRef][PubMed]
    [Google Scholar]
  27. Männistö M. K., Schumann P., Rainey F. A., Kämpfer P., Tsitko I., Tiirola M. A., Salkinoja-Salonen M. S.. ( 2000;). Subtercola boreus gen. nov., sp. nov. and Subtercola frigoramans sp. nov., two new psychrophilic actinobacteria isolated from boreal groundwater. . Int J Syst Evol Microbiol 50:, 1731–1739.[PubMed]
    [Google Scholar]
  28. Marmur J.. ( 1961;). A procedure for the isolation of DNA from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Minnikin D. E., O’Donnell A. G., Goodfellow M., Aldersonb G., Athalyeb M., Schaala A., Parletta J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  31. Park Y.-H., Suzuki K., Yim D.-G., Lee K.-C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K.. ( 1993–1994;). Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. . Antonie van Leeuwenhoek 64:, 307–313. [CrossRef][PubMed]
    [Google Scholar]
  32. Reddy G. S. N., Pradhan S., Manorama R., Shivaji S.. ( 2010;). Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. . Int J Syst Evol Microbiol 60:, 866–870. [CrossRef][PubMed]
    [Google Scholar]
  33. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  34. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  35. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  36. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  37. Schumann P.. ( 2011;). Peptidoglycan structure. . In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, pp. 101–129. Edited by Rainey F., Oren A... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  38. Schumann P., Behrendt U., Ulrich A., Suzuki K.. ( 2003;). Reclassification of Subtercola pratensis Behrendt et al. 2002 as Agreia pratensis comb. nov.. Int J Syst Evol Microbiol 53:, 2041–2044. [CrossRef][PubMed]
    [Google Scholar]
  39. Schumann P., Zhang D. C., Redzic M., Margesin R.. ( 2012;). Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. . Int J Syst Evol Microbiol 62:, 2724–2730. [CrossRef][PubMed]
    [Google Scholar]
  40. Sheridan P. P., Loveland-Curtze J., Miteva V. I., Brenchley J. E.. ( 2003;). Rhodoglobus vestalii gen. nov., sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley lake. . Int J Syst Evol Microbiol 53:, 985–994. [CrossRef][PubMed]
    [Google Scholar]
  41. Skerman V. B. D.. ( 1967;). A Guide to the Identification of the Genera of Bacteria, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  42. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  43. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  44. Suzuki K.-i., Sasaki J., Uramoto M., Nakase T., Komagata K.. ( 1997;). Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. . Int J Syst Bacteriol 47:, 474–478. [CrossRef][PubMed]
    [Google Scholar]
  45. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  46. Tsukamoto T., Takeuchi M., Shida O., Murata H., Shirata A.. ( 2001;). Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreatus. . Int J Syst Evol Microbiol 51:, 937–944. [CrossRef][PubMed]
    [Google Scholar]
  47. Weon H. Y., Kim S. J., Jang Y. H., Hamada M., Tamura T., Ahn J. H., Suzuki K., Kwon S. W.. ( 2013;). Naasia aerilata gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from air. . Int J Syst Evol Microbiol 63:, 2436–2441. [CrossRef][PubMed]
    [Google Scholar]
  48. Wu C., Lu X., Qin M., Wang Y., Ruan J.. ( 1989;). Analysis of menaquinone compound in microbial cells by HPLC. . Microbiology [English translation of Microbiology (Beijing)] 16, 176–178.
    [Google Scholar]
  49. Zhang D. C., Liu H. C., Xin Y. H., Yu Y., Zhou P. J., Zhou Y. G.. ( 2008;). Salinibacterium xinjiangense sp. nov., a psychrophilic bacterium isolated from the China No. 1 glacier. . Int J Syst Evol Microbiol 58:, 2739–2742. [CrossRef][PubMed]
    [Google Scholar]
  50. Zhi X. Y., Li W. J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052670-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052670-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error