1887

Abstract

A Gram-stain-positive, aerobic, non-motile, non-spore-forming, short rod-shaped actinobacterium, designated strain PB243, was isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies showed the isolate was clearly affiliated with the class , and most closely related to KEMC 51201-037, showing 98.8 % 16S rRNA gene sequence similarity. Cells of strain PB243 formed yellow colonies on R2A agar, contained MK-11 and MK-12 as the predominant menaquinones, -2,4-diaminobutyric acid as the diagnostic cell-wall diamino acid, and anteiso-C and iso-C among the major fatty acids. The acyl type of the muramic acid was acetyl. The G+C content of the genomic DNA of strain PB243 was 71.5 mol%. Thus, the combined genotypic and phenotypic data supported the conclusion that strain PB243 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PB243 ( = KCTC 33147 = JCM 19015).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052506-0
2013-12-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4750.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052506-0&mimeType=html&fmt=ahah

References

  1. Bates R. G., Bower V. E.. ( 1956;). Alkaline solutions for pH control. . Anal Chem 28:, 1322–1324. [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid- deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. . Methods Enzymol 1:, 138–146. [CrossRef]
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  9. Kim S.-J., Lee S.-S.. ( 2011;). Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae. . Int J Syst Evol Microbiol 61:, 155–159. [CrossRef][PubMed]
    [Google Scholar]
  10. Komagata K., Suzuki K.-I.. ( 1988;). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  11. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  12. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  15. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  16. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  18. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  19. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  20. Uchida K., Aida K.. ( 1984;). An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. . J Gen Appl Microbiol 30:, 131–134. [CrossRef]
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the as hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052506-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052506-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error