1887

Abstract

A Gram-stain-negative, short-rod-shaped bacterium, designated 22DY03, was isolated from a sediment sample collected from the East Pacific Rise. The isolate required NaCl and grew best with 3–7 % (w/v) sea salts at temperature of between 30 and 35 °C at pH 7.0. It formed non-pigmented colonies and produced exopolysaccharide, but did not produce bacteriochlorophyll . Strain 22DY03 was positive for hydrolysis of aesculin and Tween 20 and negative for hydrolysis of casein, DNA, gelatin, starch and Tween 40, 60 and 80. The major respiratory quinone was ubiquinone-10. The polar lipid profile consisted of a mixture of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, two unidentified phospholipids and four unidentified polar lipids. The major fatty acids were C cyclo ω8, Cω7 and 11-methyl Cω7. The genomic DNA G+C content was 64.6 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain 22DY03 should be assigned to the genus . The 16S rRNA gene sequence similarities between the isolate and the type strains of species of the genus were in the range of 94.1–95.8 %. On the basis of phenotypic and genotypic data, it is concluded that strain 22DY03 represents a novel species of the genus for which the name sp. nov. (type strain 22DY03 = CGMCC 1.12410 = JCM 18866) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.052274-0
2013-12-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4574.html?itemId=/content/journal/ijsem/10.1099/ijs.0.052274-0&mimeType=html&fmt=ahah

References

  1. Chen M.-H., Sheu S.-Y., Chen C. A., Wang J.-T., Chen W.-M.. ( 2012;). Roseivivax isoporae sp. nov., isolated from a reef-building coral, and emended description of the genus Roseivivax. . Int J Syst Evol Microbiol 62:, 1259–1264. [CrossRef][PubMed]
    [Google Scholar]
  2. Cho J. C., Giovannoni S. J.. ( 2006;). Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. . Int J Syst Evol Microbiol 56:, 855–859. [CrossRef][PubMed]
    [Google Scholar]
  3. Dong, X.-Z. & Cai, M.-Y. (2001). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press (English translation).
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L.. ( 1994;). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. . Int J Syst Bacteriol 44:, 410–415. [CrossRef][PubMed]
    [Google Scholar]
  6. Kamekura M., Kates M.. ( 1988;). Lipids of halophilic archaebacteria. . In Halophilic bacteria II, pp. 25–54. Edited by Rodriguez-Valera F... Boca Raton:: CRC Press;.
    [Google Scholar]
  7. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  9. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  10. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  11. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  14. Park S., Kang S.-J., Oh T.-K., Yoon J.-H.. ( 2010;). Roseivivax lentus sp. nov., isolated from a tidal flat sediment, and emended description of the genus Roseivivax Suzuki et al. 1999. . Int J Syst Evol Microbiol 60:, 1113–1117. [CrossRef][PubMed]
    [Google Scholar]
  15. Park Y. D., Baik K. S., Yi H., Bae K. S., Chun J.. ( 2005;). Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. . Int J Syst Evol Microbiol 55:, 2519–2513. [CrossRef][PubMed]
    [Google Scholar]
  16. Poli A., Esposito E., Orlando P., Lama L., Giordano A., de Appolonia F., Nicolaus B., Gambacorta A.. ( 2007;). Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. . Syst Appl Microbiol 30:, 31–38. [CrossRef][PubMed]
    [Google Scholar]
  17. Rainey F. A., Silva J., Nobre M. F., Silva M. T., da Costa M. S.. ( 2003;). Porphyrobacter cryptus sp. nov., a novel slightly thermophilic, aerobic, bacteriochlorophyll a-containing species. . Int J Syst Evol Microbiol 53:, 35–41. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Suzuki T., Muroga Y., Takahama M., Nishimura Y.. ( 1999;). Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. . Int J Syst Bacteriol 49:, 629–634. [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Wang Y., Cong Y., Liu J., Yuan Z., Deng G., Huang C., Xu Q.. ( 1998;). Bacterial glycocalyx stain analyzed by light microscopical technique. . Chin J Lab Med 21:, 197–198.
    [Google Scholar]
  22. Xiao W., Wang Y.-X., Liu J.-H., Wang Z.-G., Zhang X.-X., Ji K.-Y., Lai Y.-H., Wen M.-L., Cui X.-L.. ( 2012;). Roseivivax sediminis sp. nov., a moderately halophilic bacterium isolated from salt mine sediment. . Int J Syst Evol Microbiol 62:, 1890–1895. [CrossRef][PubMed]
    [Google Scholar]
  23. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M.. ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol 57:, 1619–1624. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.052274-0
Loading
/content/journal/ijsem/10.1099/ijs.0.052274-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error