1887

Abstract

A novel pyrene-degrading, Gram-negative bacterium, designated strain P-4, was isolated from a polycyclic aromatic hydrocarbon-degrading enrichment of polluted soils from a coking chemical plant. Cells of strain P-4 were non-motile rods. Strain P-4 grew at 15–45 °C (optimum, 37 °C), pH 6.0–10.0 (optimum, pH 8.5) and 0–4 % (w/v) NaCl. Analysis of the 16S rRNA gene sequence showed that strain P-4 was related phylogenetically to members of the genus , with sequence similarity of 93.7–95.1 %. The cellular fatty acids of strain P-4 were iso-C, summed feature 3 (Cω7 and/or Cω6), iso-C 3-OH, summed feature 9 (iso-Cω9c and/or 10-methyl C ), anteiso-C, iso-C 3-OH, C, iso-C G, C 3-OH and C 2-OH. Cells contained menaquinone 7 as the major quinone. The polyamine of strain P-4 was homospermidine, and the main polar lipids were phosphatidylethanolamine and a sphingolipid. The G+C content of the DNA was 45.4 mol%. Strain P-4 showed a range of phenotypic characteristics that differentiated it from previously recognized species, particularly its ability to use pyrene as a sole carbon source for growth and its alkaline optimal pH for growth (pH 8.5). On the basis of these results, it is concluded that strain P-4 represents a novel species of the genus , for which the name (type strain P-4 = NBRC 109113 = CGMCC 1.12195) is proposed. An emended description of the genus is also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051938-0
2013-11-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/3994.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051938-0&mimeType=html&fmt=ahah

References

  1. Busse H. J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in bacterial classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  3. Dittmer J. C., Lester R. L.. ( 1964;). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 5:, 126–127.[PubMed]
    [Google Scholar]
  4. Dong X. Z., Cai M. Y.. ( 2001;). In Determinative Manual for Routine Bacteriology. , pp. 370–390. Beijing:: Scientific Press (English translation);.
  5. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Hamana K., Matsuzaki S.. ( 1992;). Polyamines as a chemotaxonomic marker in bacterial systematics. . Crit Rev Microbiol 18:, 261–283. [CrossRef][PubMed]
    [Google Scholar]
  7. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  8. Kim M. K., Na J. R., Cho D. H., Soung N. K., Yang D. C.. ( 2007;). Parapedobacter koreensis gen. nov., sp. nov.. Int J Syst Evol Microbiol 57:, 1336–1341. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim M. K., Kim Y. A., Kim Y. J., Soung N. K., Yi T. H., Kim S. Y., Yang D. C.. ( 2008;). Parapedobacter soli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 58:, 337–340. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim S. J., Weon H. Y., Kim Y. S., Yoo S. H., Kim B. Y., Anandham R., Kwon S. W.. ( 2010;). Parapedobacter luteus sp. nov. and Parapedobacter composti sp. nov., isolated from cotton waste compost. . Int J Syst Evol Microbiol 60:, 1849–1853. [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  12. Konopka A.. ( 1993;). Isolation and characterization of a subsurface bacterium that degrades aniline and methylanilines. . FEMS Microbiol Lett 111:, 93–99. [CrossRef]
    [Google Scholar]
  13. Li X., Zhang M., Jin J., Liu S., Jiang C.. ( 2012;). [Population shift and degrading characteristics of a pyrene-degrading bacterial consortium during incubation process]. . Wei Sheng Wu Xue Bao 52:, 1260–1267 (in Chinese).[PubMed]
    [Google Scholar]
  14. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  15. Ntougias S., Fasseas C., Zervakis G. I.. ( 2007;). Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. . Int J Syst Evol Microbiol 57:, 398–404. [CrossRef][PubMed]
    [Google Scholar]
  16. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. . Appl Environ Microbiol 49:, 1–7.[PubMed]
    [Google Scholar]
  17. Ross H. N. M., Collins M. D., Tindall B. J., Grant W. D.. ( 1981;). A rapid procedure for the detection of archaebacterial lipids in halophilic bacteria. . J Gen Microbiol 123:, 75–80.
    [Google Scholar]
  18. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. ( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. Proposal of the family Sphingobacteriaceae fam. nov.. Int J Syst Bacteriol 48:, 165–177. [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  21. Walter U., Beyer M., Klein J., Rehm H.-J.. ( 1991;). Degradation of pyrene by Rhodococcus sp. UW1. . Appl Microbiol Biotechnol 34:, 671–676. [CrossRef]
    [Google Scholar]
  22. Worliczek H. L., Kämpfer P., Rosengarten R., Tindall B. J., Busse H. J.. ( 2007;). Polar lipid and fatty acid profiles – re-vitalizing old approaches as a modern tool for the classification of mycoplasmas?. Syst Appl Microbiol 30:, 355–370. [CrossRef][PubMed]
    [Google Scholar]
  23. Wu C., Lu X., Qin M., Wang Y., Ruan J.. ( 1989;). Analysis of menaquinone compound in microbial cells by HPLC. . [Microbiology (English translation of Microbiology (Beijing)] 16:, 176–178.
    [Google Scholar]
  24. Xin H. W., Itoh T., Zhou P. J., Suzuki K., Nakase T.. ( 2001;). Natronobacterium nitratireducens sp. nov., a haloalkaliphilic archaeon isolated from a soda lake in China. . Int J Syst Evol Microbiol 51:, 1825–1829. [CrossRef][PubMed]
    [Google Scholar]
  25. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N.. ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. . Int J Syst Bacteriol 33:, 580–598. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051938-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051938-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error