1887

Abstract

A Gram-stain-negative, rod-shaped bacterium was isolated and designated strain L6-8 during a study of endophytic bacterial communities in lesser duckweed (). Cells of strain L6-8 were motile with peritrichous flagella. The analysis of the nearly complete 16S rRNA gene sequence indicated that strain L6-8 was phylogenetically related to species of the genus . Its closest relatives were DN316 (97.6 %), Alt 505 (97.3 %) and J3-A127 (97.0 %). The sequence similarity analysis of housekeeping genes , , and showed low levels of sequence similarity (<91.5 %) between strain L6-8 and other species of the genus with validly published names. The pH range for growth was 4.0–9.0 (optimum 6.0–7.0), and the temperature range for growth was 20–45 °C (optimum 30 °C). Strain L6-8 tolerated NaCl up to 2 % (w/v) (optimum 1 % NaCl). The predominant components of cellular fatty acids were C cyclo ω8 (31.32 %), summed feature 8 (Cω7 and/or Cω6; 25.39 %) and C (12.03 %). The DNA G+C content of strain L6-8 was 60.4 mol% ( ). and were not amplified in strain L6-8. DNA–DNA relatedness between strain L6-8 and DN316, Alt505 and J3-A127 was between 11.2 and 18.3 %. Based on the sequence similarity analyses, phenotypic, biochemical and physiological characteristics and DNA–DNA hybridization, strain L6-8 could be readily distinguished from its closest relatives and represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is L6-8 ( = NBRC 109338 = BCC 55142).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051888-0
2013-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3823.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051888-0&mimeType=html&fmt=ahah

References

  1. Araújo W. L. , Marcon J. , Maccheroni W. Jr , Van Elsas J. D. , Van Vuurde J. W. , Azevedo J. L. . ( 2002; ). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. . Appl Environ Microbiol 68:, 4906–4914. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Frank B. . ( 1889; ). Über die Pilzsymbiose der Leguminosen. . Ber Dtsch Bot Ges 7:, 332–346 (in German).
    [Google Scholar]
  6. Gao J. L. , Sun J. G. , Li Y. , Wang E. T. , Chen W. X. . ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. . Int J Syst Bacteriol 44:, 151–158. [CrossRef]
    [Google Scholar]
  7. Graham P. H. , Parker C. A. . ( 1964; ). Diagnostic features in the characterization of the root-nodule bacteria of legumes. . Plant Soil 20:, 383–396. [CrossRef]
    [Google Scholar]
  8. Islam M. S. , Kawasaki H. , Muramatsu Y. , Nakagawa Y. , Seki T. . ( 2008; ). Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. . Biosci Biotechnol Biochem 72:, 1416–1429. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  10. Kaselitz T. B. , Hariadi N. I. , LiPuma J. J. , Weinberg J. B. . ( 2012; ). Rhizobium radiobacter bacteremia in a neonate. . Infection 40:, 437–439. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kluge A. G. , Farris J. S. . ( 1969; ). Quantitative phyletics and the evolution of Anurans. . Syst Biol 18:, 1–32. [CrossRef]
    [Google Scholar]
  14. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001; ). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  15. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic acid techniques in bacterial systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  16. Lindström K. , Lehtomäki S. . ( 1988; ). Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast-growing rhizobia. . FEMS Microbiol Lett 50:, 277–287. [CrossRef]
    [Google Scholar]
  17. MacFaddin J. F. . ( 2000; ). Biochemical Tests for Identification of Medical Bacteria, , 3rd edn., Baltimore:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  18. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  19. Martens M. , Dawyndt P. , Coopman R. , Gillis M. , De Vos P. , Willems A. . ( 2008; ). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). . Int J Syst Evol Microbiol 58:, 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Peng G. , Yuan Q. , Li H. , Zhang W. , Tan Z. . ( 2008; ). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta . . Int J Syst Evol Microbiol 58:, 2158–2163. [CrossRef] [PubMed]
    [Google Scholar]
  22. Puławska J. , Willems A. , Sobiczewski P. . ( 2012a; ). Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. . Int J Syst Evol Microbiol 62:, 895–899. [CrossRef] [PubMed]
    [Google Scholar]
  23. Puławska J. , Willems A. , De Meyer S. E. , Süle S. . ( 2012b; ). Rhizobium nepotum sp. nov. isolated from tumors on different plant species. . Syst Appl Microbiol 35:, 215–220. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rosenblueth M. , Martínez-Romero E. . ( 2004; ). Rhizobium etli maize populations and their competitiveness for root colonization. . Arch Microbiol 181:, 337–344. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
  27. Schloter M. , Wiehe W. , Assmus B. , Steindl H. , Becke H. , Höflich G. , Hartmann A. . ( 1997; ). Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. . Appl Environ Microbiol 63:, 2038–2046.[PubMed]
    [Google Scholar]
  28. Skerman V. B. D. . ( 1967; ). A Guide to the Identification of the Genera of Bacteria: With Methods and Digests of Generic Characteristics, , 2nd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  29. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  30. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tian C. F. , Wang E. T. , Wu L. J. , Han T. X. , Chen W. F. , Gu C. T. , Gu J. G. , Chen W. X. . ( 2008; ). Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba . . Int J Syst Evol Microbiol 58:, 2871–2875. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. . ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  34. van Berkum P. , Beyene D. , Bao G. , Campbell T. A. , Eardly B. D. . ( 1998; ). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. . Int J Syst Bacteriol 48:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  35. Verlander C. P. . ( 1992; ). Detection of horseradish peroxidase by colorimetry. . In Nonisotopic DNA Probe Techniques, pp. 185–201. Edited by Kricka L. J. . . New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  36. Wang E. T. , van Berkum P. , Beyene D. , Sui X. H. , Dorado O. , Chen W. X. , Martínez-Romero E. . ( 1998; ). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae . . Int J Syst Bacteriol 48:, 687–699. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wang W. , Wu Y. , Yan Y. , Ermakova M. , Kerstetter R. , Messing J. . ( 2010; ). DNA barcoding of the Lemnaceae, a family of aquatic monocots. . BMC Plant Biol 10:, 205. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  39. Yanni Y. , Rizk R. Y. , Corich V. , Squartini A. , Ninke K. , Philip-Hollingsworth S. , Orgambide G. , de Bruijn F. , Stoltzfus J. . & other authors ( 1997; ). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. . Plant Soil 194:, 99–114. [CrossRef]
    [Google Scholar]
  40. Young J. M. , Kuykendall L. D. , Martínez-Romero E. , Kerr A. , Sawada H. . ( 2001; ). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . . Int J Syst Evol Microbiol 51:, 89–103.[PubMed] [CrossRef]
    [Google Scholar]
  41. Zahran H. H. . ( 1999; ). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. . Microbiol Mol Biol Rev 63:, 968–989.[PubMed]
    [Google Scholar]
  42. Zhang G. X. , Ren S. Z. , Xu M. Y. , Zeng G. Q. , Luo H. D. , Chen J. L. , Tan Z. Y. , Sun G. P. . ( 2011a; ). Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. . Int J Syst Evol Microbiol 61:, 816–822. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang X. , Sun L. , Ma X. , Sui X. H. , Jiang R. . ( 2011b; ). Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. . Int J Syst Evol Microbiol 61:, 2425–2429. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zurdo-Piñeiro J. L. , Velázquez E. , Lorite M. J. , Brelles-Mariño G. , Schröder E. C. , Bedmar E. J. , Mateos P. F. , Martínez-Molina E. . ( 2004; ). Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici . . Syst Appl Microbiol 27:, 469–477. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051888-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051888-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error