1887

Abstract

Two Gram-negative, facultatively anaerobic, rod-shaped bacteria, strains EF212 and PS125, were isolated from the octocorals and sp., respectively. EF212 was isolated from a specimen of collected off the coast of Florida, USA, and PS125 was isolated from a specimen of sp. collected off the coast of Bimini, Bahamas. Analysis of the nearly full-length 16S rRNA gene sequences showed that these novel strains were most closely related to CL-33, MKT110 and HC50 (EF212, 95.6–97.2 % identity; PS125, 95.1–96.4 % identity). DNA–DNA hybridization values among EF212, PS125, LMG 24815 and KCTC 12372 were far below the 70 % cut-off, with all values for duplicate measurements being less than 35 %. Both EF212 and PS125 required NaCl for growth and showed optimal growth at 2–3 % NaCl, 22-30 °C and pH 8.0. The predominant cellular fatty acids were summed feature 3 (Cω6 and/or Cω7), summed feature 8 (Cω6 and/or Cω7), C and C. The DNA G+C content of EF212 was 48.6 mol% and that of PS125 was 47.5 mol%. In addition to the genotypic differences observed between the two novel strains and related type strains, phenotypic and chemotaxonomic experiments also revealed differences between strains. Thus, strains EF212 and PS125 represent novel species of the genus , for which the names sp. nov. and sp. nov., respectively, are proposed. The type strains are EF212 ( = NCCB 100458 = DSM 26535) for sp. nov. and PS125 ( = NCCB 100438 = CECT 8353) for sp. nov. An emended description of the genus is also provided to encompass differences observed in the results of genotypic, chemotaxonomic and phenotypic tests compared from the original and amended genus descriptions.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051490-0
2013-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/4294.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051490-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Bellantuono A. J., Hoegh-Guldberg O., Rodriguez-Lanetty M.. ( 2012;). Resistance to thermal stress in corals without changes in symbiont composition. . Proc Biol Sci 279:, 1100–1107. [CrossRef][PubMed]
    [Google Scholar]
  3. Bills G. F., Polishook J. D.. ( 1994;). Abundance and diversity of microfungi in leaf litter of a lowland rain forest in Costa Rica. . Mycologia 86:, 187–198. [CrossRef]
    [Google Scholar]
  4. Bourne D. G., Munn C. B.. ( 2005;). Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. . Environ Microbiol 7:, 1162–1174. [CrossRef][PubMed]
    [Google Scholar]
  5. Bourne D., Iida Y., Uthicke S., Smith-Keune C.. ( 2008;). Changes in coral-associated microbial communities during a bleaching event. . ISME J 2:, 350–363. [CrossRef][PubMed]
    [Google Scholar]
  6. Collins C. H., Lyne P. M., Grange J. M., Falkinham J. O.. ( 2004;). Collin and Lyne’s Microbiological Methods, , 8th edn.. London:: Arnold;.
    [Google Scholar]
  7. Cooney R. P., Pantos O., Le Tissier M. D. A., Barer M. R., O’Donnell A. G., Bythell J. C.. ( 2002;). Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. . Environ Microbiol 4:, 401–413. [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  9. Donadio S., Monciardini P., Sosio M.. ( 2007;). Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. . Nat Prod Rep 24:, 1073–1109. [CrossRef][PubMed]
    [Google Scholar]
  10. Eck R. V., Dayhoff M. O.. ( 1966;). Atlas of Protein Sequence and Structure. Silver Springs, MD:: National Biomedical Research Foundation;.
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Gontang E. A., Fenical W., Jensen P. R.. ( 2007;). Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. . Appl Environ Microbiol 73:, 3272–3282. [CrossRef][PubMed]
    [Google Scholar]
  14. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  15. Hansson L., Agis M., Maier C., Weinbauer M. G.. ( 2009;). Community composition of bacteria associated with coldwater coral Madrepora oculata: within and between colony variability. . Mar Ecol Prog Ser 397:, 89–102. [CrossRef]
    [Google Scholar]
  16. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  17. Jackson S. A., Kennedy J., Morrissey J. P., O’Gara F., Dobson A. D.. ( 2012;). Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. . Microb Ecol 64:, 105–116. [CrossRef][PubMed]
    [Google Scholar]
  18. Jeong H., Yim J. H., Lee C., Choi S. H., Park Y. K., Yoon S. H., Hur C. G., Kang H. Y., Kim D.. & other authors ( 2005;). Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. . Nucleic Acids Res 33:, 7066–7073. [CrossRef][PubMed]
    [Google Scholar]
  19. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  20. Keller M. D., Bellows W. K., Guillard R. L.. ( 1989;). Dimethylsulfide production in marine phytoplankton. . In Biogenic Sulfur in the Environment, pp. 167–182. Edited by Saltzman E. S., Cooper J. C... Washington, DC:: American Chemical Society;. [CrossRef]
    [Google Scholar]
  21. Kennedy J., Codling C. E., Jones B. V., Dobson A. D., Marchesi J. R.. ( 2008;). Diversity of microbes associated with the marine sponge, Haliclona simulans, isolated from Irish waters and identification of polyketide synthase genes from the sponge metagenome. . Environ Microbiol 10:, 1888–1902. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  23. Koeuth T., Versalovic J., Lupski J. R.. ( 1995;). Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. . Genome Res 5:, 408–418. [CrossRef][PubMed]
    [Google Scholar]
  24. Kurahashi M., Yokota A.. ( 2007;). Endozoicomonas elysicola gen. nov., sp. nov., a gamma-proteobacterium isolated from the sea slug Elysia ornata. . Syst Appl Microbiol 30:, 202–206. [CrossRef][PubMed]
    [Google Scholar]
  25. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  26. Kvennefors E. C., Sampayo E., Ridgway T., Barnes A. C., Hoegh-Guldberg O.. ( 2010;). Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. . PLoS ONE 5:, e10401. [CrossRef][PubMed]
    [Google Scholar]
  27. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  28. Lee O. O., Yang J., Bougouffa S., Wang Y., Batang Z., Tian R., Al-Suwailem A., Qian P. Y.. ( 2012;). Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. . Appl Environ Microbiol 78:, 7173–7184. [CrossRef][PubMed]
    [Google Scholar]
  29. Littman R. A., Willis B. L., Pfeffer C., Bourne D. G.. ( 2009;). Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. . FEMS Microbiol Ecol 68:, 152–163. [CrossRef][PubMed]
    [Google Scholar]
  30. Lopez J. V., Ranzer L. K., Ledger A., Schoch B., Duckworth A., McCarthy P. J., Kerr R. G.. ( 2008;). Comparison of bacterial diversity within the coral reef sponge, Axinella corrugata, and the encrusting coral Erythropodium caribaeorum. . In Proceedings of the 11th International Coral Reef Symposium, Fort Lauderdale, FL, USA:, 7–11 July 2008. Session number 26.
    [Google Scholar]
  31. MacFaddin J. F.. ( 2000;). Biochemical Tests for the Identification of Medical Bacteria, , 3rd edn.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  32. Manefield M., Whiteley A. S., Griffiths R. I., Bailey M. J.. ( 2002;). RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. . Appl Environ Microbiol 68:, 5367–5373. [CrossRef][PubMed]
    [Google Scholar]
  33. Menezes C. B., Bonugli-Santos R. C., Miqueletto P. B., Passarini M. R., Silva C. H., Justo M. R., Leal R. R., Fantinatti-Garboggini F., Oliveira V. M.. & other authors ( 2010;). Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. . Microbiol Res 165:, 466–482. [CrossRef][PubMed]
    [Google Scholar]
  34. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  35. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  36. Morrow K. M., Moss A. G., Chadwick N. E., Liles M. R.. ( 2012;). Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. . Appl Environ Microbiol 78:, 6438–6449. [CrossRef][PubMed]
    [Google Scholar]
  37. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  38. Nishijima M., Adachi K., Katsuta A., Shizuri Y., Yamasato K.. ( 2013;). Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. . Int J Syst Evol Microbiol 63:, 709–714. [CrossRef][PubMed]
    [Google Scholar]
  39. Pike R., Haltli B., Overy D., Berrue F., Kerr R.. ( 2012;). Investigating the diversity and marine natural products of bacteria associated with the gorgonian octocoral, Eunicea fusca. . Planta Med 78:, CL-1. [CrossRef]
    [Google Scholar]
  40. Raina J. B., Tapiolas D., Willis B. L., Bourne D. G.. ( 2009;). Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. . Appl Environ Microbiol 75:, 3492–3501. [CrossRef][PubMed]
    [Google Scholar]
  41. Raina J. B., Dinsdale E. A., Willis B. L., Bourne D. G.. ( 2010;). Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends Microbiol 18:, 101–108. [CrossRef][PubMed]
    [Google Scholar]
  42. Rohwer F., Breitbart M., Jara J., Azam F., Knowlton N.. ( 2001;). Diversity of bacteria associated with the Caribbean coral Montastraea franksi. . Coral Reefs 20:, 85–91. [CrossRef]
    [Google Scholar]
  43. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  44. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  45. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  46. Schuett C., Doepke H., Grathoff A., Gedde M.. ( 2007;). Bacterial aggregates in the tentacles of the sea anemone Metridium senile. . Helgol Mar Res 61:, 211–216. [CrossRef]
    [Google Scholar]
  47. Sneath P. H., Sokal R. R.. ( 1973;). Numerical Taxonomy. San Francisco:: Freeman;.
    [Google Scholar]
  48. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  49. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  50. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  51. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  52. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  53. Yang C. S., Chen M. H., Arun A. B., Chen C. A., Wang J. T., Chen W. M.. ( 2010;). Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. . Int J Syst Evol Microbiol 60:, 1158–1162. [CrossRef][PubMed]
    [Google Scholar]
  54. Zurel D., Benayahu Y., Or A., Kovacs A., Gophna U.. ( 2011;). Composition and dynamics of the gill microbiota of an invasive Indo-Pacific oyster in the eastern Mediterranean Sea. . Environ Microbiol 13:, 1467–1476. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051490-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051490-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error