1887

Abstract

Ten strains of Gram-stain-negative, rod-shaped, non-spore-forming bacteria were isolated from the burial mound soil collected before the dismantling and samples collected during the dismantling work on the Takamatsuzuka Tumulus in Asuka village, Nara Prefecture, Japan in 2007. On the basis of the 16S rRNA gene sequence analysis of the isolates, they were accommodated in the genus (class ) and can be separated into four groups within the cluster containing the genus . One of the groups demonstrated a phylogenetic position identical to that of , which was isolated from small holes on plaster walls of the stone chamber interior of Kitora Tumulus in Asuka village, Nara Prefecture, Japan. The remaining three groups consisted of novel lineages within the genus A total of four isolates were selected from each group and carefully identified using a polyphasic approach. The isolates were characterized on the basis of their possessing Q-10 as the major ubiquinone system and Cω7 (58.5–65.2 %) as the predominant fatty acid. A DNA–DNA hybridization test was used to determine that the three lineages represented novel species, for which the names sp. nov., sp. nov. and sp. nov. are proposed. The type strains are T611xx-1-4a ( = JCM 19097 = NCIMB 14861), T61213-20-1a ( = JCM 19094 = NCIMB 14859) and T6203-4-1a ( = JCM 19092 = NCIMB 14860), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.051292-0
2013-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/11/3981.html?itemId=/content/journal/ijsem/10.1099/ijs.0.051292-0&mimeType=html&fmt=ahah

References

  1. De Ley J., Swings J., Gosselé F.. ( 1984;). Genus I. Acetobacter Beijerinck 1898, 215AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 268–274. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  2. Dutta D., Gachhui R.. ( 2007;). Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. . Int J Syst Evol Microbiol 57:, 353–357. [CrossRef][PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Franke I. H., Fegan M., Hayward C., Leonard G., Stackebrandt E., Sly L. I.. ( 1999;). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. . Int J Syst Bacteriol 49:, 1681–1693. [CrossRef][PubMed]
    [Google Scholar]
  5. Fuentes-Ramírez L. E., Bustillos-Cristales R., Tapia-Hernández A., Jiménez-Salgado T., Wang E. T., Martínez-Romero E., Caballero-Mellado J.. ( 2001;). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. . Int J Syst Evol Microbiol 51:, 1305–1314.[PubMed]
    [Google Scholar]
  6. Gillis M., Kersters K., Hoste B., Janssens D., Kroppenstedt R. M., Stephan M. P., Teixeira K. R. S., Döbereiner J., Deley J.. ( 1989;). Acetobacter diazotrophicus sp. nov., a nitrogen-fixing acetic acid bacterium associated with sugarcane. . Int J Syst Bacteriol 39:, 361–364. [CrossRef]
    [Google Scholar]
  7. Ishizaki, T. & Kigawa, R. (2011). Conservation of the mural paintings of the Takamatsuzuka and Kitora Tumuli in Japan. In Lascaux and Preservation Issues in Subterranean Environments, Proceedings of the Symposium, Paris on February 26–27, 2009, pp. 261–274. Edited by N. Coye. Paris: Maison des Sciences de l'Homme.
  8. Kigawa R., Sano C., Nishijima M., Tazato N., Kiyuna T., Hayakawa N., Kawanobe W., Udagawa S., Tateishi T., Sugiyama J.. ( 2013;). Investigation of acetic acid bacteria isolated from the Kitora tumulus in Japan and their involvement in the deterioration of the plaster of the mural paintings. . Stud Conserv 58:, 30–40. [CrossRef]
    [Google Scholar]
  9. Navarro R. R., Komagata K.. ( 1999;). Differentiation of Gluconacetobacter liquefaciens and Gluconacetobacter xylinus on the basis of DNA base composition, DNA relatedness, and oxidation products from glucose. . J Gen Appl Microbiol 45:, 7–15. [CrossRef][PubMed]
    [Google Scholar]
  10. Sano C., Nishijima M., Kiyuna T., Kigawa R., Sugiyama J.. ( 2010;). [ Carboxylic acids productivity of major microorganisms isolated from the stone chamber interior of Takamatsuzuka Tumulus and Kitora Tumulus, Nara Prefecture, Japan. ]. Sci Conserv 49:, 209–218. (in Japanese).
    [Google Scholar]
  11. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  12. Sugiyama J., Kiyuna T., An K.-D., Nagatsuka Y., Handa Y., Tazato N., Hata-Tomita J., Nishijima M., Koide T.. & other authors ( 2009;). Microbiological survey of the stone chambers of Takamatsuzuka and Kitora tumuli, Nara Prefecture, Japan: a milestone in elucidating the cause of biodeterioration of mural paintings. . In Study of Environmental Conditions Surrounding Cultural Properties and Their Protective Measures, pp. 51–73. Edited by Sano C... Tokyo:: National Research Institute for Cultural Properties, Tokyo;.
    [Google Scholar]
  13. Tazato N., Nishijima M., Handa Y., Kigawa R., Sano C., Sugiyama J.. ( 2012;). Gluconacetobacter tumulicola sp. nov. and Gluconacetobacter asukensis sp. nov., isolated from the stone chamber interior of the Kitora Tumulus. . Int J Syst Evol Microbiol 62:, 2032–2038. [CrossRef][PubMed]
    [Google Scholar]
  14. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky L., Moore L. H., Moore W. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  15. Yamada Y.. ( 1986;). Methods for the Isolation of Microorganisms, pp. 454–457. Edited by Yamasato K., Udagawa S., Kodama T., Morichi T... Tokyo:: R & D Planning;.
    [Google Scholar]
  16. Yamada Y., Yukphan P.. ( 2008;). Genera and species in acetic acid bacteria. . Int J Food Microbiol 125:, 15–24. [CrossRef][PubMed]
    [Google Scholar]
  17. Yamada Y., Aida K., Uemura T.. ( 1969;). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. . J Gen Appl Microbiol 15:, 181–196. [CrossRef]
    [Google Scholar]
  18. Yamada Y., Hoshino K., Ishikawa T.. ( 1997;). The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level. . Biosci Biotechnol Biochem 61:, 1244–1251. [CrossRef][PubMed]
    [Google Scholar]
  19. Yamada Y., Yukphan P., Lan Vu H. T., Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y.. ( 2012;). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). . J Gen Appl Microbiol 58:, 397–404. [CrossRef][PubMed]
    [Google Scholar]
  20. Yamada Y., Yukphan P., Thi Lan Vu H., Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y.. ( 2013;). Komagataeibacter gen. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation list no. 149. . Int J Syst Evol Microbiol 63:, 1–5. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.051292-0
Loading
/content/journal/ijsem/10.1099/ijs.0.051292-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error