1887

Abstract

An aerobic, Gram-stain-negative, spiral or rod-shaped, non-spore-forming, diazotrophic bacterium (strain CC-LY743) was isolated from a fermentative tank in Taiwan. Strain CC-LY743 was able to grow at 20–37 °C and pH 6.0–8.0 and tolerated up to 3.0 % (w/v) NaCl. It was positive for nitrogen fixation, with activity of 10.6 nmol ethylene h. 16S rRNA gene sequence analysis of strain CC-LY743 showed highest similarity to DSM 19922 (96.1 %), JCM 21588 (96.0 %) and DSM 19657 (96.0 %) and lower similarity (<96.0 %) to all other species. Highest gene sequence similarities were obtained with BCRC 12270 (92.0 %), BCRC 80273 (92.3 %) and DSM 19657 (91.8 %). It was positive in the rapid identification by a genus-specific primer set. The predominant quinone system was ubiquinone 10 (Q-10) and the DNA G+C content was 69.6±0.1 mol%. The major fatty acids found in strain CC-LY743 were -C, C cyclo ω8, C 3-OH/C iso I, Cω7/Cω6 and Cω7/Cω6. Based on its phylogenetic, phenotypic and chemotaxonomic features, strain CC-LY743 is considered to represent a novel species within the genus for which the name sp. nov. is proposed. The type strain is CC-LY743 ( = BCRC 80505 = JCM 18688 = LMG 27264).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050872-0
2013-10-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3762.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050872-0&mimeType=html&fmt=ahah

References

  1. Aziz A., Martin-Tanguy J., Larher F.. ( 1997;). Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. . Plant Growth Regul 21:, 153–163. [CrossRef]
    [Google Scholar]
  2. Bally R., Thomas-Bauzon D., Heulin T., Balandreau J., Richard C., De Ley J.. ( 1983;). Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. . Can J Microbiol 29:, 881–887. [CrossRef]
    [Google Scholar]
  3. Bashan Y., Holguin G., de-Bashan L. E.. ( 2004;). Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). . Can J Microbiol 50:, 521–577. [CrossRef][PubMed]
    [Google Scholar]
  4. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E... London:: Academic Press;.
    [Google Scholar]
  5. Döbereiner J., Day J. M.. ( 1976;). Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. . In Proceedings of the First International Symposium on N2 Fixation, pp. 518–538. Edited by Newton W. E., Nyman C. J.. Pullman, WA:: Washington State University Press;.
    [Google Scholar]
  6. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. . Nucleic Acids Res 17:, 7843–7853. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. GCG ( 1995;). Wisconsin Package Version 8.1 Program Manual. Madison, WI:: Genetics Computer Group;.
    [Google Scholar]
  11. Hardy R., Burns R. C., Holsten R. D.. ( 1973;). Application of the acetylene-ethylene assay for measurement of nitrogen fixation. . Soil Biol Biochem 5:, 47–81. [CrossRef]
    [Google Scholar]
  12. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y.. ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8:, 557–561.[PubMed]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kirchhof G., Reis V. M., Baldani J. I., Eckert B., Döbereiner J., Hartmann A.. ( 1997;). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. . Plant Soil 194:, 45–55. [CrossRef]
    [Google Scholar]
  15. Koch B., Evans H. J.. ( 1966;). Reduction of acetylene to ethylene by soybean root nodules. . Plant Physiol 41:, 1748–1750. [CrossRef][PubMed]
    [Google Scholar]
  16. Ladha J. K., So R. B., Watanabe I.. ( 1987;). Composition of Azospirillum species associated with wetland rice plants grown in different soils. . Plant Soil 102:, 127–129. [CrossRef]
    [Google Scholar]
  17. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V., Kuever J., Lysenko A., Grabovich M.. ( 2010;). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. . Int J Syst Evol Microbiol 60:, 2832–2837. [CrossRef][PubMed]
    [Google Scholar]
  18. Lin S.-Y., Young C.-C., Hupfer H., Siering C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F.. ( 2009;). Azospirillum picis sp. nov., isolated from discarded tar. . Int J Syst Evol Microbiol 59:, 761–765. [CrossRef][PubMed]
    [Google Scholar]
  19. Lin S.-Y., Shen F.-T., Young C.-C.. ( 2011;). Rapid detection and identification of the free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. . Antonie van Leeuwenhoek 99:, 837–844. [CrossRef][PubMed]
    [Google Scholar]
  20. Lin S.-Y., Shen F.-T., Young L.-S., Zhu Z.-L., Chen W.-M., Young C.-C.. ( 2012;). Azospirillum formosense sp. nov., a diazotroph from agricultural soil. . Int J Syst Evol Microbiol 62:, 1185–1190. [CrossRef][PubMed]
    [Google Scholar]
  21. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007;). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. . Int J Syst Evol Microbiol 57:, 620–624. [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  24. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 31–32. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Okon Y., Itzigsohn R.. ( 1992;). Poly-β-hydroxybutyrate metabolism in Azospirillum brasilense and the ecological role of PHB in the rhizosphere. . FEMS Microbiol Lett 103:, 131–139.
    [Google Scholar]
  27. Okon Y., Vanderleyden J.. ( 1997;). Root-associated Azospirillum species can stimulate plants. . ASM News 63:, 366–370.
    [Google Scholar]
  28. Ostle A. G., Holt J. G.. ( 1982;). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. . Appl Environ Microbiol 44:, 238–241.[PubMed]
    [Google Scholar]
  29. Paisley R.. ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual. Newark, DE:: MIDI;.
    [Google Scholar]
  30. Patriquin D. G., Döbereiner J., Jain D. K.. ( 1983;). Sites and processes of association between diazotrophs and grasses. . Can J Microbiol 29:, 900–915. [CrossRef]
    [Google Scholar]
  31. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  32. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J.. ( 1987;). Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). . Int J Syst Bacteriol 37:, 43–51. [CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  34. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  35. Saxena B., Modi M., Modi V.. ( 1986;). Isolation and characterization of siderophores from Azospirillum lipoferum D-2. . J Gen Microbiol 132:, 2219–2224.
    [Google Scholar]
  36. Schlegel H. G., Lafferty R., Krauss I.. ( 1970;). The isolation of mutants not accumulating poly-β-hydroxybutyric acid. . Arch Mikrobiol 71:, 283–294. [CrossRef][PubMed]
    [Google Scholar]
  37. Seshadri S., Muthukumarasamy R., Lakshinarasimhan C., Ignacimuthu S.. ( 2000;). Solubilization of inorganic phosphates by Azospirillum halopraeferans. . Curr Sci 79:, 565–567.
    [Google Scholar]
  38. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  39. Steenhoudt O., Vanderleyden J.. ( 2000;). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. . FEMS Microbiol Rev 24:, 487–506. [CrossRef][PubMed]
    [Google Scholar]
  40. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  41. Tarrand J. J., Krieg N. R., Döbereiner J.. ( 1978;). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov.. Can J Microbiol 24:, 967–980. [CrossRef][PubMed]
    [Google Scholar]
  42. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  43. Thuler D. S., Floh E. I., Handro W., Barbosa H. R.. ( 2003;). Plant growth regulators and amino acids released by Azospirillum sp in chemically defined media. . Lett Appl Microbiol 37:, 174–178. [CrossRef][PubMed]
    [Google Scholar]
  44. Tien T. M., Gaskins M. H., Hubbell D. H.. ( 1979;). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). . Appl Environ Microbiol 37:, 1016–1024.[PubMed]
    [Google Scholar]
  45. Watts D., MacBeath J. R.. ( 2001;). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167:, 153–170.[PubMed]
    [Google Scholar]
  46. Young C.-C., Hupfer H., Siering C., Ho M.-J., Arun A. B., Lai W.-A., Rekha P. D., Shen F.-T., Hung M.-H.. & other authors ( 2008;). Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 58:, 959–963. [CrossRef][PubMed]
    [Google Scholar]
  47. Zhou S., Han L., Wang Y., Yang G., Zhuang L., Hu P.. ( 2013;). Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. . Int J Syst Evol Microbiol 63:, 2618–2624. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050872-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050872-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error