1887

Abstract

A bacterial strain designated RLAHU4B was isolated from root nodules of in León (Spain). The 16S rRNA gene sequence of this strain showed similarities lower than 97 % with respect to species of the genus . The strain was a Gram-variable, sporulating rod, motile by means of peritrichous flagella, and facultatively anaerobic. It was positive for oxidase, catalase and β-galactosidase production but negative for urease, amylase and gelatinase. Strain RLAHU4B grew in the presence of 5 % NaCl. MK-7 was the predominant menaquinone and -diaminopimelic acid was present in the peptidoglycan. anteiso-C, iso-C, iso-C and C were the major fatty acids. Major polar lipids of strain RLAHU4B were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, two unknown aminophospholipids and one unknown lipid. The DNA G+C content was 57.8 mol%. Strain RLAHU4B presented phenotypic differences from all recognized species of the genus . The phylogenetic, chemotaxonomic and phenotypic data indicated that strain RLAHU4B belongs to a novel species of the genus , for which the name sp. nov. is proposed, with strain RLAHU4B ( = LMG 27416 = CECT 8236) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050849-0
2014-01-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/1/83.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050849-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Ardley J. K. , Parker M. A. , De Meyer S. E. , Trengove R. D. , O’Hara G. W. , Reeve W. G. , Yates R. J. , Dilworth M. J. , Willems A. , Howieson J. G. . ( 2012; ). Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. . Int J Syst Evol Microbiol 62:, 2579–2588. [CrossRef] [PubMed]
    [Google Scholar]
  3. Azo W. M. , Lane G. P. F. , Davies W. P. , Cannon N. D. . ( 2012; ). Bi-cropping white lupins (Lupinus albus L.) with cereals for wholecrop forage in organic farming: the effect of seed rate and harvest dates on crop yield and quality. . Biol Agric Hortic 28:, 86–100. [CrossRef]
    [Google Scholar]
  4. Cai F. , Wang Y. , Qi H. , Dai J. , Yu B. , An H. , Rahman E. , Fang C. . ( 2010; ). Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. . Int J Syst Evol Microbiol 60:, 1605–1608. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chun J. , Goodfellow M. . ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef] [PubMed]
    [Google Scholar]
  6. Claus D. , Berkeley R. C. W. . ( 1986; ). Genus Bacillus Cohn 1872, 174AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by Sneath P. H. A. , Mair N. S. , Sharpe M. E. , Holt J. G. . . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  7. De Meyer S. E. , Willems A. . ( 2012; ). Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. . Int J Syst Evol Microbiol 62:, 2505–2510. [CrossRef] [PubMed]
    [Google Scholar]
  8. Doetsch R. N. . ( 1981; ). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. García-Fraile P. , Velázquez E. , Mateos P. F. , Martínez-Molina E. , Rivas R. . ( 2008; ). Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . . Int J Syst Evol Microbiol 58:, 1855–1859. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jiang F. , Dai J. , Wang Y. , Xue X. , Xu M. , Li W. , Fang C. , Peng F. . ( 2012; ). Cohnella arctica sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62:, 817–821. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kämpfer P. , Rosselló-Mora R. , Falsen E. , Busse H.-J. , Tindall B. J. . ( 2006; ). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef] [PubMed]
    [Google Scholar]
  12. Khianngam S. , Tanasupawat S. , Akaracharanya A. , Kim K. K. , Lee K. C. , Lee J. S. . ( 2012; ). Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. . Int J Syst Evol Microbiol 62:, 1921–1925. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim S. J. , Weon H. Y. , Kim Y. S. , Kwon S. W. . ( 2011; ). Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. isolated from soil samples in Korea. . J Microbiol 49:, 1033–1038. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  16. Logan N. A. , Berge O. , Bishop A. H. , Busse H.-J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. et al. ( 2009; ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mandel M. , Marmur J. . ( 1968; ). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  18. Rhuland L. E. , Work E. , Denman R. F. , Hoare D. S. . ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  19. Rivas R. , García-Fraile P. , Mateos P. F. , Martínez-Molina E. , Velázquez E. . ( 2007; ). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . . Lett Appl Microbiol 44:, 181–187. [CrossRef] [PubMed]
    [Google Scholar]
  20. Rogers J. S. , Swofford D. L. . ( 1998; ). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47:, 77–89. [CrossRef] [PubMed]
    [Google Scholar]
  21. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Schumann P. . ( 2011; ). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  23. Sierra G. . ( 1957; ). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23:, 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  25. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  27. Trujillo M. E. , Kroppenstedt R. M. , Fernández-Molinero C. , Schumann P. , Martínez-Molina E. . ( 2007; ). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius . . Int J Syst Evol Microbiol 57:, 2799–2804. [CrossRef] [PubMed]
    [Google Scholar]
  28. Trujillo M. E. , Alonso-Vega P. , Rodríguez R. , Carro L. , Cerda E. , Alonso P. , Martínez-Molina E. . ( 2010; ). The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius . . ISME J 4:, 1265–1281. [CrossRef] [PubMed]
    [Google Scholar]
  29. Velázquez E. , Valverde A. , Rivas R. , Gomis V. , Peix A. , Gantois I. , Igual J. M. , León-Barrios M. , Willems A. et al. ( 2010; ). Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium . . Antonie van Leeuwenhoek 97:, 363–376. [CrossRef] [PubMed]
    [Google Scholar]
  30. Vincent J. M. . ( 1970; ). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of Root-Nodule Bacteria, pp. 1–13. Edited by Vincent J. M. . . Oxford:: Blackwell Scientific;.
    [Google Scholar]
  31. Wolko B. , Clements J. C. , Naganowska B. , Nelson M. N. , Yang H. . ( 2011; ). Lupinus. . In Wild Crop Relatives: Genomic and Breeding Resources, pp. 153–206. Edited by Kole C. . . Berlin, Heidelberg:: Springer;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050849-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050849-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error