1887

Abstract

A novel nitrogen-fixing strain, designated DQS-4, was isolated from oilcontaminated soil in Taiwan and was characterized using a polyphasic taxonomic approach. Cells of strain DQS-4 stained Gram-negative, contained poly-β-hydroxybutyrate granules and were motile rods, surrounded by a thin capsule. Cells displayed a strictly aerobic type of metabolism and fixed nitrogen microaerobically. Growth occurred at 10–45 °C (optimum, 35–40 °C), at pH 7.0–8.0 (optimum, pH 7.0) and with 0–2 % NaCl (optimum, 0.5–1 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DQS-4 belonged to the genus , and its closest neighbours were VB32 and SWub3, with sequence similarities of 97.4 and 96.4 %, respectively. The major cellular fatty acids of strain DQS-4 were summed feature 3 (comprising Cω7 and/or Cω6), C and Cω7. The major cellular hydroxy fatty acid was C 3-OH. The DNA G+C content was 64.5 mol%. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. The mean level of DNA–DNA relatedness between strain DQS-4 and LMG 9092 was 27.4 %. On the basis of the genotypic and phenotypic data, strain DQS-4 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is DQS-4 ( = BCRC 80407 = KCTC 23918 = LMG 26893).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050609-0
2013-10-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/10/3755.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050609-0&mimeType=html&fmt=ahah

References

  1. Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G.. ( 1995;). Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. . Int J Syst Bacteriol 45:, 327–333. [CrossRef][PubMed]
    [Google Scholar]
  2. Anzai Y., Kudo Y., Oyaizu H.. ( 1997;). The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. . Int J Syst Bacteriol 47:, 249–251. [CrossRef][PubMed]
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 19–33. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Bontemps C., Elliott G. N., Simon M. F., Dos Reis Júnior F. B., Gross E., Lawton R. C., Neto N. E., de Fátima Loureiro M., De Faria S. M.. & other authors ( 2010;). Burkholderia species are ancient symbionts of legumes. . Mol Ecol 19:, 44–52. [CrossRef][PubMed]
    [Google Scholar]
  5. Breznak J. A., Costilow R. N.. ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 309–329. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. ( 2001;). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef][PubMed]
    [Google Scholar]
  7. Elliott G. N., Chen W. M., Chou J. H., Wang H. C., Sheu S.-Y., Perin L., Reis V. M., Moulin L., Simon M. F.. & other authors ( 2007;). Burkholderia phymatum is a highly effective nitrogen-fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. . New Phytol 173:, 168–180. [CrossRef][PubMed]
    [Google Scholar]
  8. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G... Chichester:: Wiley;.
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. ( 1993;). phylip (phylogeny inference package), version 3.5c. . Distributed by the author. Department of Genome Sciences, University of Washington;, Seattle, USA:.
  12. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  13. Hurek T., Wagner B., Reinhold-Hurek B.. ( 1997;). Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. . Appl Environ Microbiol 63:, 4331–4339.[PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  16. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M.. ( 2001;). The RDP-II (Ribosomal Database Project). . Nucleic Acids Res 29:, 173–174. [CrossRef][PubMed]
    [Google Scholar]
  18. Mechichi T., Stackebrandt E., Gad'on N., Fuchs G.. ( 2002;). Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov.. Arch Microbiol 178:, 26–35. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the GC content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Nokhal T. H., Schlegel H. G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  22. Powers E. M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  23. Reinhold B., Hurek T., Niemann E.-G., Fendrik I.. ( 1986;). Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. . Appl Environ Microbiol 52:, 520–526.[PubMed]
    [Google Scholar]
  24. Reinhold-Hurek B., Hurek T.. ( 2006;). The genera Azoarcus, Azovibrio, Azospira and Azonexus. . In The Prokaryotes, , 3rd edn., vol. 5, pp. 873–891. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  25. Reinhold-Hurek B., Hurek T., Gillis M., Hoste B., Vancanneyt M., Kersters K., De Ley J.. ( 1993;). Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov.. Int J Syst Bacteriol 43:, 574–584. [CrossRef]
    [Google Scholar]
  26. Rosado A. S., Duarte G. F., Seldin L., Van Elsas J. D.. ( 1998;). Genetic diversity of nifH gene sequences in Paenibacillus azotofixans strains and soil samples analyzed by denaturing gradient gel electrophoresis of PCR-amplified gene fragments. . Appl Environ Microbiol 64:, 2770–2779.[PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. , MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
  29. Song B., Häggblom M. M., Zhou J., Tiedje J. M., Palleroni N. J.. ( 1999;). Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov.. Int J Syst Bacteriol 49:, 1129–1140. [CrossRef][PubMed]
    [Google Scholar]
  30. Springer N., Ludwig W., Philipp B., Schink B.. ( 1998;). Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. . Int J Syst Bacteriol 48:, 953–956. [CrossRef][PubMed]
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 330–393. Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  36. Young J. P. W.. ( 1992;). Phylogenetic classification of nitrogen-fixing organisms. . In Biological Nitrogen Fixation, pp. 43–86. Edited by Stacey G., Burris R. H., Evans H. J... New York:: Chapman & Hall;.
    [Google Scholar]
  37. Zhou J., Fries M. R., Chee-Sanford J. C., Tiedje J. M.. ( 1995;). Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov.. Int J Syst Bacteriol 45:, 500–506. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050609-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050609-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error