1887

Abstract

Strain CC65, a novel extremely halophilic archaeon, was isolated from a brine sample of a salt lake in Iran. The novel strain was light yellow-pigmented, non-motile, pleomorphic and required at least 1.7 M NaCl and 0.02 M MgCl for growth. Optimal growth was achieved at 3.5 M NaCl and 0.4 M MgCl. The optimum pH and temperature for growth were pH 7.5 and 40 °C, respectively, while it was able to grow over a pH and a temperature range of pH 6.5–9.0 and 30–50 °C, respectively. Analysis of 16S rRNA gene sequence revealed that strain CC65 clustered with the sole member of the genus , DC30 with a sequence similarity of 98.0 %. The polar lipid profile of strain CC65 consisted of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. An unidentified glycolipid and two minor phospholipids were also observed. The only quinone present was MK-8(II-H). The DNA GC content of strain CC65 was 63.8 mol%. On the basis of the biochemical and physiological characteristics, as well as DNA–DNA hybridization (44 % with IBRC 10041), strain CC65 is classified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CC65 ( = IBRC-M 10418 = KCTC 4045).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050500-0
2013-09-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3232.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050500-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Makhdoumi-Kakhki A., Shahzadeh Fazeli S. A., Azarbaijani R., Ventosa A.. ( 2012;). Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. . Int J Syst Evol Microbiol 62:, 1932–1936. [CrossRef][PubMed]
    [Google Scholar]
  2. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  3. Bryant M. P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  5. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  6. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  7. Dyall-Smith M.. ( 2008;). The Halohandbook: Protocols for Haloarchaeal Genetics. . http://www.haloarchaea.com/resources/halohandbook.
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. González C., Gutiérrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  10. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  11. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A.. ( 2001;). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). . Int J Syst Evol Microbiol 51:, 1133–1142. [CrossRef][PubMed]
    [Google Scholar]
  12. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  14. Makhdoumi-Kakhki A., Amoozegar M. A., Bagheri M., Ramezani M., Ventosa A.. ( 2012a;). Haloarchaeobius iranensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from a saline lake. . Int J Syst Evol Microbiol 62:, 1021–1026. [CrossRef][PubMed]
    [Google Scholar]
  15. Makhdoumi-Kakhki A., Amoozegar M. A., Ventosa A.. ( 2012b;). Halovenus aranensis gen. nov., sp. nov., an extremely halophilic archaeon from Aran-Bidgol salt lake. . Int J Syst Evol Microbiol 62:, 1331–1336. [CrossRef][PubMed]
    [Google Scholar]
  16. Makhdoumi-Kakhki A., Amoozegar M. A., Kazemi B., Pašić L., Ventosa A.. ( 2012c;). Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. . Microbes Environ 27:, 87–93. [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  18. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  23. Wainø M., Tindall B. J., Ingvorsen K.. ( 2000;). Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. . Int J Syst Evol Microbiol 50:, 183–190. [CrossRef][PubMed]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050500-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050500-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error