1887

Abstract

A Gram-reaction-negative, facultatively anaerobic, non-motile, rod-shaped, non-photosynthetic bacterial strain, DW2-9, was isolated from soil. The highest 16S rRNA gene sequence similarities were found to ATCC 11166 (97.1 %), JA737 (96.4 %), JA276 (96.2 %), ATCC 35703 (96.0 %), CCUG 47968 (96.0 %), CCUG 52307 (95.9 %) and JA296 (95.7 %). The genomic DNA G+C content was 67.2 mol% and the major respiratory quinone was ubiquinone 10 (Q-10). The major cellular fatty acids (>5 %) were Cω7, C, C cyclo ω8 and summed feature 3 (one or more of iso-C 2-OH, Cω6 and Cω7). However, unlike species of the genus , strain DW2-9 neither formed internal photosynthetic membranes nor produced photosynthetic pigments. DNA–DNA hybridization between strain DW2-9 and JCM 21090 showed a relatedness of 33 %. Strain DW2-9 contained phosphatidylethanolamine, phosphatidylglycerol and an unknown aminophospholipid as major polar lipids, which differed from those of species of the genera and . In addition to the differences in phylogenetic position and polar lipid types, strain DW2-9 could be distinguished from species of the genus by the cultivation conditions. On the basis of our polyphasic taxonomic analysis, strain DW2-9 is considered to represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is DW2-9 ( = CCTCC AB 2011145 = KCTC 15169). Emended descriptions of the genera and are also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050351-0
2014-02-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/551.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050351-0&mimeType=html&fmt=ahah

References

  1. Andrews S. S., Mitchell J. P., Mancinelli R. D., Karlen D. L., Hartz T. K., Horwath W. R., Pettygrove G. S., Scow K. M., Munk D. S.. ( 2002;). On-farm assessment of soil quality in California’s Central Valley. . Agron J 94:, 12–23. [CrossRef]
    [Google Scholar]
  2. Biebl H., Drews G.. ( 1969;). Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 123:, 425–452 (in German).[PubMed]
    [Google Scholar]
  3. Biebl H., Pfennig N.. ( 1981;). Isolation of members of the family Rhodospirillaceae. . In The Prokaryotes, pp. 267–273. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  4. Dong X.-Z., Cai M.-Y.. ( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press;.
    [Google Scholar]
  5. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  6. Eckersley K., Dow C. S.. ( 1980;). Rhodopseudomonas blastica sp. nov.: a member of the Rhodospirillaceae. . J Gen Microbiol 119:, 465–473.
    [Google Scholar]
  7. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G.. ( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. . J Appl Microbiol 105:, 529–539. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Greub G., Raoult D.. ( 2003;). Rhodobacter massiliensis sp. nov., a new amoebae-resistant species isolated from the nose of a patient. . Res Microbiol 154:, 631–635. [CrossRef][PubMed]
    [Google Scholar]
  10. Grossart H. P., Steward G. F., Martinez J., Azam F.. ( 2000;). A simple, rapid method for demonstrating bacterial flagella. . Appl Environ Microbiol 66:, 3632–3636. [CrossRef][PubMed]
    [Google Scholar]
  11. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  12. Helsel L. O., Hollis D., Steigerwalt A. G., Morey R. E., Jordan J., Aye T., Radosevic J., Jannat-Khah D., Thiry D.. & other authors ( 2007;). Identification of “Haematobacter,” a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as “Haematobacter massiliensis comb. nov.”. J Clin Microbiol 45:, 1238–1243. [CrossRef][PubMed]
    [Google Scholar]
  13. Hiraishi A., Ueda Y.. ( 1994;). Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov.. Int J Syst Bacteriol 44:, 15–23. [CrossRef]
    [Google Scholar]
  14. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  15. Imhoff J. F.. ( 2005;). Genus Rhodobacter. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 161–167. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;. [CrossRef]
    [Google Scholar]
  16. Imhoff J. F., Trüper H. G., Pfennig N.. ( 1984;). Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. . Int J Syst Bacteriol 34:, 340–343. [CrossRef]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  19. Luo G., Shi Z., Wang G.. ( 2012;). Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. . Int J Syst Evol Microbiol 62:, 1659–1665. [CrossRef][PubMed]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  21. Okkenhaug G., Zhu Y. G., Luo L., Lei M., Li X., Mulder J.. ( 2011;). Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. . Environ Pollut 159:, 2427–2434. [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Shalem Raj P., Ramaprasad E. V. V., Vaseef S., Sasikala Ch., Ramana Ch. V.. ( 2013;). Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. . Int J Syst Evol Microbiol 63:, 181–186. [CrossRef][PubMed]
    [Google Scholar]
  24. Sorokin D. Y., Tourova T. P., Spiridonova E. M., Rainey F. A., Muyzer G.. ( 2005;). Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. . Int J Syst Evol Microbiol 55:, 1069–1075. [CrossRef][PubMed]
    [Google Scholar]
  25. Srinivas T. N. R., Anil Kumar P., Sasikala Ch., Ramana Ch. V.. ( 2007;). Rhodovulum imhoffii sp. nov.. Int J Syst Evol Microbiol 57:, 228–232. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  28. Tanaka Y., Hanada S., Manome A., Tsuchida T., Kurane R., Nakamura K., Kamagata Y.. ( 2004;). Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. . Int J Syst Evol Microbiol 54:, 955–959. [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  30. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  31. Uchino Y., Hamada T., Yokota A.. ( 2002;). Proposal of Pseudorhodobacter ferrugineus gen. nov., comb. nov., for a non-photosynthetic marine bacterium, Agrobacterium ferrugineum, related to the genus Rhodobacter. . J Gen Appl Microbiol 48:, 309–319. [CrossRef][PubMed]
    [Google Scholar]
  32. Yu Y., Yan S.-L., Li H.-R., Zhang X.-H.. ( 2011;). Roseicitreum antarcticum gen. nov., sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium isolated from Antarctic sandy intertidal sediment. . Int J Syst Evol Microbiol 61:, 2173–2179. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.050351-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050351-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error