1887

Abstract

A Gram-reaction-negative, facultatively anaerobic, non-motile, rod-shaped, non-photosynthetic bacterial strain, DW2-9, was isolated from soil. The highest 16S rRNA gene sequence similarities were found to ATCC 11166 (97.1 %), JA737 (96.4 %), JA276 (96.2 %), ATCC 35703 (96.0 %), CCUG 47968 (96.0 %), CCUG 52307 (95.9 %) and JA296 (95.7 %). The genomic DNA G+C content was 67.2 mol% and the major respiratory quinone was ubiquinone 10 (Q-10). The major cellular fatty acids (>5 %) were Cω7, C, C cyclo ω8 and summed feature 3 (one or more of iso-C 2-OH, Cω6 and Cω7). However, unlike species of the genus , strain DW2-9 neither formed internal photosynthetic membranes nor produced photosynthetic pigments. DNA–DNA hybridization between strain DW2-9 and JCM 21090 showed a relatedness of 33 %. Strain DW2-9 contained phosphatidylethanolamine, phosphatidylglycerol and an unknown aminophospholipid as major polar lipids, which differed from those of species of the genera and . In addition to the differences in phylogenetic position and polar lipid types, strain DW2-9 could be distinguished from species of the genus by the cultivation conditions. On the basis of our polyphasic taxonomic analysis, strain DW2-9 is considered to represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is DW2-9 ( = CCTCC AB 2011145 = KCTC 15169). Emended descriptions of the genera and are also proposed.

Funding
This study was supported by the:
  • Chinese 863 project (Award 2012AA101402-3)
  • Hubei Tobacco Industrial Corporation Ltd, Enshi Branch, PR China
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.050351-0
2014-02-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/551.html?itemId=/content/journal/ijsem/10.1099/ijs.0.050351-0&mimeType=html&fmt=ahah

References

  1. Andrews S. S., Mitchell J. P., Mancinelli R. D., Karlen D. L., Hartz T. K., Horwath W. R., Pettygrove G. S., Scow K. M., Munk D. S. ( 2002 ). On-farm assessment of soil quality in California’s Central Valley. . Agron J 94, 1223. [View Article]
    [Google Scholar]
  2. Biebl H., Drews G. ( 1969 ). Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceae. . Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 123, 425452 (in German).[PubMed]
    [Google Scholar]
  3. Biebl H., Pfennig N. ( 1981 ). Isolation of members of the family Rhodospirillaceae . . In The Prokaryotes, pp. 267273. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. . Berlin:: Springer;. [View Article]
    [Google Scholar]
  4. Dong X.-Z., Cai M.-Y. ( 2001 ). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press;.
    [Google Scholar]
  5. Dussault H. P. ( 1955 ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70, 484485.[PubMed]
    [Google Scholar]
  6. Eckersley K., Dow C. S. ( 1980 ). Rhodopseudomonas blastica sp. nov.: a member of the Rhodospirillaceae . . J Gen Microbiol 119, 465473.
    [Google Scholar]
  7. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. ( 2008 ). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. . J Appl Microbiol 105, 529539. [View Article] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  9. Greub G., Raoult D. ( 2003 ). Rhodobacter massiliensis sp. nov., a new amoebae-resistant species isolated from the nose of a patient. . Res Microbiol 154, 631635. [View Article] [PubMed]
    [Google Scholar]
  10. Grossart H. P., Steward G. F., Martinez J., Azam F. ( 2000 ). A simple, rapid method for demonstrating bacterial flagella. . Appl Environ Microbiol 66, 36323636. [View Article] [PubMed]
    [Google Scholar]
  11. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. ( 2010 ). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59, 307321. [View Article] [PubMed]
    [Google Scholar]
  12. Helsel L. O., Hollis D., Steigerwalt A. G., Morey R. E., Jordan J., Aye T., Radosevic J., Jannat-Khah D., Thiry D. & other authors ( 2007 ). Identification of “Haematobacter,” a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as “Haematobacter massiliensis comb. nov.”. J Clin Microbiol 45, 12381243. [View Article] [PubMed]
    [Google Scholar]
  13. Hiraishi A., Ueda Y. ( 1994 ). Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov.. Int J Syst Bacteriol 44, 1523. [View Article]
    [Google Scholar]
  14. Huss V. A. R., Festl H., Schleifer K. H. ( 1983 ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4, 184192. [View Article] [PubMed]
    [Google Scholar]
  15. Imhoff J. F. ( 2005 ). Genus Rhodobacter . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2C, pp. 161167. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. . New York:: Springer;. [View Article]
    [Google Scholar]
  16. Imhoff J. F., Trüper H. G., Pfennig N. ( 1984 ). Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. . Int J Syst Bacteriol 34, 340343. [View Article]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  18. Kluge A. G., Farris J. S. ( 1969 ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18, 132. [View Article]
    [Google Scholar]
  19. Luo G., Shi Z., Wang G. ( 2012 ). Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. . Int J Syst Evol Microbiol 62, 16591665. [View Article] [PubMed]
    [Google Scholar]
  20. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [View Article]
    [Google Scholar]
  21. Okkenhaug G., Zhu Y. G., Luo L., Lei M., Li X., Mulder J. ( 2011 ). Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. . Environ Pollut 159, 24272434. [View Article] [PubMed]
    [Google Scholar]
  22. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  23. Shalem Raj P., Ramaprasad E. V. V., Vaseef S., Sasikala Ch., Ramana Ch. V. ( 2013 ). Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. . Int J Syst Evol Microbiol 63, 181186. [View Article] [PubMed]
    [Google Scholar]
  24. Sorokin D. Y., Tourova T. P., Spiridonova E. M., Rainey F. A., Muyzer G. ( 2005 ). Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. . Int J Syst Evol Microbiol 55, 10691075. [View Article] [PubMed]
    [Google Scholar]
  25. Srinivas T. N. R., Anil Kumar P., Sasikala Ch., Ramana Ch. V. ( 2007 ). Rhodovulum imhoffii sp. nov.. Int J Syst Evol Microbiol 57, 228232. [View Article] [PubMed]
    [Google Scholar]
  26. Tamaoka J., Komagata K. ( 1984 ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25, 125128. [View Article]
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S. ( 2007 ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24, 15961599. [View Article] [PubMed]
    [Google Scholar]
  28. Tanaka Y., Hanada S., Manome A., Tsuchida T., Kurane R., Nakamura K., Kamagata Y. ( 2004 ). Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. . Int J Syst Evol Microbiol 54, 955959. [View Article] [PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [View Article] [PubMed]
    [Google Scholar]
  30. Tindall B. J. ( 1990 ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [View Article]
    [Google Scholar]
  31. Uchino Y., Hamada T., Yokota A. ( 2002 ). Proposal of Pseudorhodobacter ferrugineus gen. nov., comb. nov., for a non-photosynthetic marine bacterium, Agrobacterium ferrugineum, related to the genus Rhodobacter . . J Gen Appl Microbiol 48, 309319. [View Article] [PubMed]
    [Google Scholar]
  32. Yu Y., Yan S.-L., Li H.-R., Zhang X.-H. ( 2011 ). Roseicitreum antarcticum gen. nov., sp. nov., an aerobic bacteriochlorophyll a-containing alphaproteobacterium isolated from Antarctic sandy intertidal sediment. . Int J Syst Evol Microbiol 61, 21732179. [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.050351-0
Loading
/content/journal/ijsem/10.1099/ijs.0.050351-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error