1887

Abstract

The taxonomic position of strain MSSRFBL1, isolated from chickpea rhizosphere soil from Kannivadi, India, was determined. Strain MSSRFBL1 formed bluish black colonies, stained Gram-negative and was motile, aerobic, capable of fixing dinitrogen, oxidase-negative and catalase-positive. Q-10 was the major respiratory quinone. Major fatty acids of strain MSSRFBL1 were Cω7 and Ccycloω8. Minor amounts of C, C, C 3-OH, C 3-OH, C, Cω6/Cω7, C 3-OH and Cω7 were also present. Polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine and two unidentified glycolipids. Bacteriohopane derivatives (BHD1 and 2), diplopterol, diploptene, bishomohopanediol, adenosylhopane and 2β-methyl bacteriohopanetetrol were the major hopanoids of strain MSSRFBL1. The genomic DNA G+C content was 71 mol%. EzTaxon-e-based analysis of the 16S rRNA gene indicated the highest similarity of strain MSSRFBL1 to LMG 20216 (97.3 %) and other members of the genus (<96.9 %) in the family of the class . However, phylogenetic analysis based on 16S rRNA, , and gene sequences showed distinct out-grouping from the recognized genera of the family . Based on phenotypic, genotypic and chemotaxonomic characters, strain MSSRFBL1 represents a novel species in a new genus in the family for which the name gen. nov., sp. nov. is proposed. The type strain of is MSSRFBL1 ( = DSM 25528 = KCTC 32403).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049726-0
2013-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/12/4484.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049726-0&mimeType=html&fmt=ahah

References

  1. An D. S., Im W. T., Yang H. C., Lee S. T.. ( 2006;). Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov.. Int J Syst Evol Microbiol 56:, 443–448. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow K. D., Chuck J. A.. ( 1990;). Determination of hopanoid levels in bacteria using high-performance liquid chromatography. . Anal Biochem 184:, 395–399. [CrossRef][PubMed]
    [Google Scholar]
  3. Cappuccino J. G., Sherman N.. ( 1998;). Microbiology: a Laboratory Manual, , 5th edn.. Menlo Park, CA:: Benjamin/Cummings;.
    [Google Scholar]
  4. Hiraishi A., Hoshino Y., Kitamura H.. ( 1984;). Isoprenoid quinone composition in the classification of Rhodospirillaceae. . J Gen Appl Microbiol 30:, 197–210. [CrossRef]
    [Google Scholar]
  5. Kates M.. ( 1986;). Techniques in Lipidology: Isolation, Analysis and Identification of Lipids, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  6. Kim S. J., Weon H. Y., Kim Y. S., Anandham R., Yoo S. H., Park I. C., Kwon S. W.. ( 2010;). Kaistia terrae sp. nov., isolated from a wetland in Korea. . Int J Syst Evol Microbiol 60:, 949–952. [CrossRef][PubMed]
    [Google Scholar]
  7. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  8. Kuhn R., Starr M. P., Kuhn D. A., Bauer H., Knackmuss H. J.. ( 1965;). Indigoidine and other bacterial pigments related to 3,3′-Bipyridyl. . Arch Mikrobiol 51:, 71–84. [CrossRef][PubMed]
    [Google Scholar]
  9. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  10. Li R., MacRae I. C.. ( 1992;). Specific identification and enumeration of Acetobacter diazotrophicus in sugarcane. . Soil Biol Biochem 24:, 413–419. [CrossRef]
    [Google Scholar]
  11. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  12. Martens M., Delaere M., Coopman R., De Vos P., Gillis M., Willems A.. ( 2007;). Multilocus sequence analysis of Ensifer and related taxa. . Int J Syst Evol Microbiol 57:, 489–503. [CrossRef][PubMed]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef][PubMed]
    [Google Scholar]
  15. Raj P. S., Chakravarthy S. K., Ramaprasad E. V. V., Sasikala Ch., Ramana Ch. V.. ( 2012;). Phaeospirillum tilakii sp. nov., a phototrophic alphaproteobacterium isolated from aquatic sediments. . Int J Syst Evol Microbiol 62:, 1069–1074. [CrossRef][PubMed]
    [Google Scholar]
  16. Rameshkumar N., Nair S.. ( 2009;). Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres. . FEMS Microbiol Ecol 67:, 455–467. [CrossRef][PubMed]
    [Google Scholar]
  17. Rohmer M., Bouvier-Nave P., Ourisson G.. ( 1984;). Distribution of hopanoid triterpenes in prokaryotes. . J Gen Microbiol 130:, 1137–1150.
    [Google Scholar]
  18. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc.;
    [Google Scholar]
  19. Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V.. ( 2013;). Vogesella alkaliphila sp. nov., isolated from an alkaline soil, and emended description of the genus Vogesella. . Int J Syst Evol Microbiol 63:, 2338–2343. [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  22. Trüper G., Pfennig N.. ( 1981;). Isolation of members of the families Chromatiaceae and Chlorobiaceae. . In The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria, pp. 279–289. Edited by Starr M. P., Stolp H. , Trüper H. G., Balows A., Schlegel H. G... Berlin:: Springer;.
    [Google Scholar]
  23. Turdahon M., Osman G., Hamdun M., Yusuf K., Abdurehim Z., Abaydulla G., Abdukerim M., Fang C., Rahman E.. ( 2012;). Rhizobium tarimense sp. nov. isolated from soil in the ancient Khiyik river. . Int J Syst Evol Microbiol 63:, 2424–2429. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049726-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049726-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error