1887

Abstract

An aerobic, Gram-stain-negative, short rod-shaped, non-motile and non-sporulating bacterium, designed strain 8-1b, was isolated from seaweed collected from the intertidal zone of Zhoushan sea area, East China Sea. Strain 8-1b grew at 4–39 °C (optimum, 28–32 °C) and at pH 6.0–9.5 (optimum, 7.0–8.5), and with 0.5–8 % (w/v) NaCl (optimum, 1–3 %) and 0.5–10 % (w/v) sea salts (optimum, 2–3 %). Analysis of 16S rRNA gene sequences revealed that strain 8-1b was related closely to JCM 15070 (96.7 % similarity). The DNA G+C content of strain 8-1b was 36.6 mol%. Compared with reference strains, cells of strain 8-1b showed positive activities for HS production and utilization of -mannose, -lactic acid, -asparagine and glycyl -aspartic acid. The major fatty acids of strain 8-1b were iso-C, iso-C 3-OH, iso-C G and iso-Cω9. The main respiratory quinone was menaquinone 6. The polar lipids of strain 8-1b consisted of phosphatidylethanolamine (PE), three uncharacterized aminolipids (AL1–3), four uncharacterized glycolipids (GL1–4) and five uncharacterized lipids (L1–5). Based on the phenotypic and genotypic characterization, strain 8-1b represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is strain 8-1b ( = CGMCC 1.11023 = JCM 18497). Emended descriptions of and are also presented.

Funding
This study was supported by the:
  • , Zhoushan Scientific and Technological Program , (Award 10323)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049635-0
2013-09-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3192.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049635-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (eds) ( 1993 ). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Bowman J. P., Nichols D. S. ( 2002 ). Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. . Int J Syst Evol Microbiol 52, 15331541. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brown M. V., Bowman J. P. ( 2001 ). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). . FEMS Microbiol Ecol 35, 267275. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chung A. P., Rainey F., Nobre M. F., Burghardt J., da Costa M. S. ( 1997 ). Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. . Int J Syst Bacteriol 47, 12251230. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cottrell M. T., Kirchman D. L. ( 2000 ). Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. . Appl Environ Microbiol 66, 16921697. [CrossRef] [PubMed]
    [Google Scholar]
  6. Davey K. E., Kirby R. R., Turley C. M., Weightman A. J., Fry J. C. ( 2001 ). Depth variation of bacterial extracellular enzyme activity and population diversity in the northeastern North Atlantic Ocean. . Deep Sea Res Part II Top Stud Oceanogr 48, 10031017. [CrossRef]
    [Google Scholar]
  7. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Glöckner F. O., Fuchs B. M., Amann R. ( 1999 ). Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. . Appl Environ Microbiol 65, 37213726.[PubMed]
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. ( 1974 ). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24, 5463. [CrossRef]
    [Google Scholar]
  10. Grossart H. P. ( 1999 ). Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii) incubated under various conditions in the lab. . Aquat Microb Ecol 19, 111. [CrossRef]
    [Google Scholar]
  11. Kawasaki K., Nogi Y., Hishinuma M., Nodasaka Y., Matsuyama H., Yumoto I. ( 2002 ). Psychromonas marina sp. nov., a novel halophilic, facultatively psychrophilic bacterium isolated from the coast of the Okhotsk Sea. . Int J Syst Evol Microbiol 52, 14551459. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. ( 1988 ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . . Int J Syst Bacteriol 38, 358361. [CrossRef]
    [Google Scholar]
  15. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. ( 2002 ). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25, 360375. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mesbah M., Whitman W. B. ( 1989 ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479, 297306. [CrossRef] [PubMed]
    [Google Scholar]
  17. Park S. C., Baik K. S., Kim M. S., Kim S. S., Kim S. R., Oh M.-J., Kim D., Bang B.-H., Seong C. N. ( 2009 ). Aequorivita capsosiphonis sp. nov., isolated from the green alga Capsosiphon fulvescens, and emended description of the genus Aequorivita . . Int J Syst Evol Microbiol 59, 724728. [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tindall B. J. ( 1989 ). Fully saturated menaquinones in the archae-bacterium Pyrobaculum islandicum . . FEMS Microbiol Lett 60, 251254. [CrossRef]
    [Google Scholar]
  22. Xu X.-W., Wu Y.-H., Wang C.-S., Oren A., Zhou P.-J., Wu M. ( 2007a ). Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57, 717720. [CrossRef] [PubMed]
    [Google Scholar]
  23. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M. ( 2007b ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol 57, 16191624. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049635-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049635-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error