1887

Abstract

Six halo-acidophilic archaeal strains were isolated from four commercial salt samples obtained from seawater in the Philippines, Indonesia (Bali) and Japan (Okinawa) on agar plates at pH 4.5. Cells of the six strains were pleomorphic, and stained Gram-negative. Two strains were pink–red pigmented, while four other strains were orange–pink pigmented. Strain MH1-16-3 was able to grow at 9–30 % (w/v) NaCl [with optimum at 18 % (w/v) NaCl], at pH 4.5–6.8 (optimum, pH 5.5) and at 20–50 °C (optimum, 42 °C). The five other strains grew at slightly different ranges. The six strains required at least 1 mM Mg for growth. The 16S rRNA gene sequences of the six strains were almost identical, sharing 99.9 (1–2 nt differences) to 100 % similarity. The closest relatives were MH1-52-1 and MH1-34-1 with 97.7 % similarity. The DNA G+C contents of the six strains were 63.2–63.7 mol%. Levels of DNA–DNA relatedness amongst the six strains were 79–86 %, while those between MH1-16-3 and MH1-52-1 and MH1-34-1 were both 43 and 45 % (reciprocally), respectively. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the six isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MH1-16-3 ( = JCM 16108 = CECT 7535).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.049262-0
2013-09-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3143.html?itemId=/content/journal/ijsem/10.1099/ijs.0.049262-0&mimeType=html&fmt=ahah

References

  1. Cline S. W., Schalkwyk L. C., Doolittle W. F.. ( 1989;). Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. . J Bacteriol 171:, 4987–4991.[PubMed]
    [Google Scholar]
  2. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 2002;). phylip (phylogeney inference package), version 3.6a. . Distributed by the author, University of Washington;, Seattle, USA:.
  6. Gonzalez C., Gutierrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  7. Gutiérrez M. C., Castillo A. M., Kamekura M., Ventosa A.. ( 2008;). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 58:, 2880–2884. [CrossRef][PubMed]
    [Google Scholar]
  8. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  9. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  10. Minegishi H., Mizuki T., Echigo A., Fukushima T., Kamekura M., Usami R.. ( 2008;). Acidophilic haloarchaeal strains are isolated from various solar salts. . Saline Syst 4:, 16. [CrossRef][PubMed]
    [Google Scholar]
  11. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R.. ( 2010;). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60:, 2513–2516. [CrossRef][PubMed]
    [Google Scholar]
  12. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K.. ( 2012;). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62:, 188–195. [CrossRef][PubMed]
    [Google Scholar]
  13. Miyazaki S., Sugawara H., Gojobori T., Tateno Y.. ( 2003;). DNA Data Bank of Japan (DDBJ) in XML. . Nucleic Acids Res 31:, 13–16. [CrossRef][PubMed]
    [Google Scholar]
  14. Oren A.. ( 2012;). Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. . Int J Syst Evol Microbiol 62:, 263–271. [CrossRef][PubMed]
    [Google Scholar]
  15. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  16. Pearson W. R., Lipman D. J.. ( 1988;). Improved tools for biological sequence comparison. . Proc Natl Acad Sci U S A 85:, 2444–2448. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiology Today 33:, 152–155.
    [Google Scholar]
  20. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  21. Stamatakis A., Ludwig T., Meier H.. ( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  24. Yamauchi Y., Minegishi H., Echigo A., Shimane Y., Shimoshige H., Kamekura M., Itoh T., Doukyu N., Inoue A., Usami R.. ( 2013;). Halarchaeum salinum sp. nov., a moderately acidophilic haloarchaeon isolated from commercial sea salt. . Int J Syst Evol Microbiol 63:, 1138–1142. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.049262-0
Loading
/content/journal/ijsem/10.1099/ijs.0.049262-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error