1887

Abstract

Twenty -like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sequence, suggesting close relatedness. The isolates were similar to members of the genus in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of (strain LU2006-1) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91 % of the genomes was 95.16 %. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these -like isolates to LU2006-1. Sufficient genetic divergence of the -like isolates from the type strain of and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name subsp. subsp. nov. is proposed. The type strain is TTU M1-001 ( = BAA-2414 = DSM 25391). The isolates of subsp. subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of contained putative enhancin genes; the subsp. subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048587-0
2013-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3257.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048587-0&mimeType=html&fmt=ahah

References

  1. Aziz R. K. , Bartels D. , Best A. A. , DeJongh M. , Disz T. , Edwards R. A. , Formsma K. , Gerdes S. , Glass E. M. . & other authors ( 2008; ). The rast server: rapid annotations using subsystems technology. . BMC Genomics 9:, 75. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bazaka K. , Crawford R. J. , Nazarenko E. L. , Ivanova E. P. . ( 2011; ). Bacterial extracellular polysaccharides. . Adv Exp Med Biol 715:, 213–226. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bertsch D. , Rau J. , Eugster M. R. , Haug M. C. , Lawson P. A. , Lacroix C. , Meile L. . ( 2013; ). Listeria fleischmannii sp. nov., isolated from cheese. . Int J Syst Evol Microbiol 63:, 526–532. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bierne H. , Sabet C. , Personnic N. , Cossart P. . ( 2007; ). Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes . . Microbes Infect 9:, 1156–1166. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boerlin P. , Rocourt J. , Grimont F. , Grimont P. A. D. , Jacquet C. , Piffaretti J.-C. . ( 1992; ). Listeria ivanovii subsp. londonienisis subsp. nov.. Int J Syst Bacteriol 42:, 69–73. [CrossRef]
    [Google Scholar]
  6. Buchrieser C. , Rusniok C. , Garrido P. , Hain T. , Scortti M. , Lampidis R. , Kärst U. , Chakraborty T. , Cossart P. . & other authors ( 2011; ). Complete genome sequence of the animal pathogen Listeria ivanovii, which provides insights into host specificities and evolution of the genus Listeria . . J Bacteriol 193:, 6787–6788. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chevreux, B., Wetter, T. & Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. In Computer Science and Biology: Proceedings of the German Conference on Bioinformatics (GCB) 99, pp. 45–56.
  8. Cole J. R. , Wang Q. , Cardenas E. , Fish J. , Chai B. , Farris R. J. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Marsh T. . & other authors ( 2009; ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database issue), D141–D145. [CrossRef] [PubMed]
    [Google Scholar]
  9. den Bakker H. C. , Bundrant B. N. , Fortes E. D. , Orsi R. H. , Wiedmann M. . ( 2010a; ). A population genetics-based and phylogenetic approach to understanding the evolution of virulence in the genus Listeria. . Appl Environ Microbiol 76:, 6085–6100. [CrossRef] [PubMed]
    [Google Scholar]
  10. den Bakker H. C. , Cummings C. A. , Ferreira V. , Vatta P. , Orsi R. H. , Degoricija L. , Barker M. , Petrauskene O. , Furtado M. R. , Wiedmann M. . ( 2010b; ). Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss. . BMC Genomics 11:, 688. [CrossRef] [PubMed]
    [Google Scholar]
  11. Donald Nicholas D. , Nason A. . ( 1957; ). [144] Determination of nitrate and nitrite. . Methods Enzymol 3:, 981–984. [CrossRef]
    [Google Scholar]
  12. Flamm R. K. , Hinrichs D. J. , Thomashow M. F. . ( 1984; ). Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. . Infect Immun 44:, 157–161.[PubMed]
    [Google Scholar]
  13. Galloway C. S. , Wang P. , Winstanley D. , Jones I. M. . ( 2005; ). Comparison of the bacterial Enhancin-like proteins from Yersinia and Bacillus spp. with a baculovirus Enhancin. . J Invertebr Pathol 90:, 134–137. [CrossRef] [PubMed]
    [Google Scholar]
  14. Glaser P. , Frangeul L. , Buchrieser C. , Rusniok C. , Amend A. , Baquero F. , Berche P. , Bloecker H. , Brandt P. . & other authors ( 2001; ). Comparative genomics of Listeria species. . Science 294:, 849–852.[PubMed]
    [Google Scholar]
  15. Gouin E. , Mengaud J. , Cossart P. . ( 1994; ). The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. . Infect Immun 62:, 3550–3553.[PubMed]
    [Google Scholar]
  16. Graves L. M. , Helsel L. O. , Steigerwalt A. G. , Morey R. E. , Daneshvar M. I. , Roof S. E. , Orsi R. H. , Fortes E. D. , Milillo S. R. . & other authors ( 2010; ). Listeria marthii sp. nov., isolated from the natural environment, Finger Lakes National Forest. . Int J Syst Evol Microbiol 60:, 1280–1288. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gray M. J. , Zadoks R. N. , Fortes E. D. , Dogan B. , Cai S. , Chen Y. , Scott V. N. , Gombas D. E. , Boor K. J. , Wiedmann M. . ( 2004; ). Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. . Appl Environ Microbiol 70:, 5833–5841. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hain T. , Steinweg C. , Kuenne C. T. , Billion A. , Ghai R. , Chatterjee S. S. , Domann E. , Kärst U. , Goesmann A. . & other authors ( 2006; ). Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes . . J Bacteriol 188:, 7405–7415. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hitchins A. D. , Jinneman K. . ( 2011; ). Bacteriological Analytical Manual (BAM). Detection and Enumeration of Listeria monocytogenes in Foods . . Silver Spring, MD:: US Food and Drug Administration;. http://www.fda.gov/Food/Food ScienceResearch/LaboratoryMethods/ucm071400htm
  20. Johnson J. , Jinneman K. , Stelma G. , Smith B. G. , Lye D. , Messer J. , Ulaszek J. , Evsen L. , Gendel S. . & other authors ( 2004; ). Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. . Appl Environ Microbiol 70:, 4256–4266. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kurtz S. , Phillippy A. , Delcher A. L. , Smoot M. , Shumway M. , Antonescu C. , Salzberg S. L. . ( 2004; ). Versatile and open software for comparing large genomes. . Genome Biol 5:, R12. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lang Halter E. , Neuhaus K. , Scherer S. . ( 2013; ). Listeria weihenstephanensis sp. nov., isolated from the water plant Lemna trisulca taken from a freshwater pond. . Int J Syst Evol Microbiol 63:, 641–647. [CrossRef] [PubMed]
    [Google Scholar]
  23. Leclercq A. , Clermont D. , Bizet C. , Grimont P. A. D. , Le Flèche-Matéos A. , Roche S. M. , Buchrieser C. , Cadet-Daniel V. , Le Monnier A. . & other authors ( 2010; ). Listeria rocourtiae sp. nov.. Int J Syst Evol Microbiol 60:, 2210–2214. [CrossRef] [PubMed]
    [Google Scholar]
  24. Li L. , Stoeckert C. J. Jr , Roos D. S. . ( 2003; ). OrthoMCL: identification of ortholog groups for eukaryotic genomes. . Genome Res 13:, 2178–2189. [CrossRef] [PubMed]
    [Google Scholar]
  25. Li H. , Medina F. , Vinson S. B. , Coates C. J. . ( 2005; ). Isolation, characterization, and molecular identification of bacteria from the red imported fire ant (Solenopsis invicta) midgut. . J Invertebr Pathol 89:, 203–209. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ludwig W. , Schleifer K. H. , Whittam W. B. . ( 2009; ). Family III. Listeriaceae fam. nov. In Bergey’s Manual of Systematic Bacteriology. , , 2nd edn., vol. 3 (The Firmicutes), pp. 244–268. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K. H. , Whitman W. B. . . New York:: Springer;.
  27. Maddison W. P. , Maddison D. R. . ( 1989; ). Interactive analysis of phylogeny and character evolution using the computer program MacClade. . Folia Primatol (Basel) 53:, 190–202. [CrossRef] [PubMed]
    [Google Scholar]
  28. McLauchlin J. , Rees C. E. D. . ( 2009; ). Genus I. Listeria Pirie 1940a 383AL. In Bergey’s Manual of Systematic Bacteriology. , , 2nd edn., vol. 3 (The Firmicutes), pp. 244–257. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K. H. , Whitman W. B. . . New York:: Springer;.
  29. Richter M. , Rosselló-Móra R. . ( 2009; ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rijpens N. , Vlaemynck G. , Rossau R. , Herman L. , Jannes G. . ( 1998; ). Unidentified Listeria-like bacteria isolated from cheese. . Lett Appl Microbiol 27:, 198–202. [CrossRef] [PubMed]
    [Google Scholar]
  31. Rocourt J. , Hof H. , Schrettenbrunner A. , Malinverni R. , Bille J. . ( 1986; ). [Acute purulent Listeria seelingeri meningitis in an immunocompetent adult]. . Schweiz Med Wochenschr 116:, 248–251 (in French).[PubMed]
    [Google Scholar]
  32. Scallan E. , Hoekstra R. M. , Angulo F. J. , Tauxe R. V. , Widdowson M. A. , Roy S. L. , Jones J. L. , Griffin P. M. . ( 2011; ). Foodborne illness acquired in the United States–major pathogens. . Emerg Infect Dis 17:, 7–15.[PubMed] [CrossRef]
    [Google Scholar]
  33. Schmid M. W. , Ng E. Y. W. , Lampidis R. , Emmerth M. , Walcher M. , Kreft J. , Goebel W. , Wagner M. , Schleifer K.-H. . ( 2005; ). Evolutionary history of the genus Listeria and its virulence genes. . Syst Appl Microbiol 28:, 1–18. [CrossRef] [PubMed]
    [Google Scholar]
  34. Stamatakis A. . ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef] [PubMed]
    [Google Scholar]
  35. Steinweg C. , Kuenne C. T. , Billion A. , Mraheil M. A. , Domann E. , Ghai R. , Barbuddhe S. B. , Kärst U. , Goesmann A. . & other authors ( 2010; ). Complete genome sequence of Listeria seeligeri, a nonpathogenic member of the genus Listeria . . J Bacteriol 192:, 1473–1474. [CrossRef] [PubMed]
    [Google Scholar]
  36. Vázquez-Boland J. A. , Kuhn M. , Berche P. , Chakraborty T. , Domínguez-Bernal G. , Goebel W. , González-Zorn B. , Wehland J. , Kreft J. . ( 2001; ). Listeria pathogenesis and molecular virulence determinants. . Clin Microbiol Rev 14:, 584–640. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wu M. , Eisen J. A. . ( 2008; ). A simple, fast, and accurate method of phylogenomic inference. . Genome Biol 9:, R151. [CrossRef] [PubMed]
    [Google Scholar]
  38. Zerbino D. R. , Birney E. . ( 2008; ). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. . Genome Res 18:, 821–829. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048587-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048587-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error