1887

Abstract

A yellow‐pigmented, Gram-negative rod, designated FNE08-86, was isolated from subsurface water of the humic-matter-rich and almost-neutral north-east basin of the experimentally divided bog lake Grosse Fuchskuhle (Brandenburg, Germany). Analysis of the nearly full-length 16S rRNA gene sequence showed the highest 16S rRNA gene sequence similarity with IAM 14222 (96.3 %). Sequence similarities with all other members of the genus species were <96 %, but phylogenetic tree construction clearly showed the placement of strain FNE08-86 within the genus . The predominant fatty acids were Cω7 and C, and only a single 2-hydroxy fatty acid, C 2-OH, was detected. The polar lipid profile revealed phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as major compounds, with smaller amounts of sphingoglycolipid, phosphatidylmonomethylethanolamine, diphosphatidylglycerol and several unidentified lipids. In the quinone system ubiquinone Q-10 was predominant and in the polyamine pattern spermidine was predominant. Characterization by genotypic, chemotaxonomic and phenotypic analysis indicated that strain FNE08-86 represents a novel species of the genus , for which we propose the name sp. nov. (type strain FNE08-86  = DSM 25088  = CCM 7983).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.048280-0
2013-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2630.html?itemId=/content/journal/ijsem/10.1099/ijs.0.048280-0&mimeType=html&fmt=ahah

References

  1. Addison S. L., Foote S. M., Reid N. M., Lloyd-Jones G.. ( 2007;). Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. . Int J Syst Evol Microbiol 57:, 2467–2471. [CrossRef][PubMed]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  3. Baek S. H., Lim J. H., Jin L., Lee H. G., Lee S. T.. ( 2011;). Novosphingobium sediminicola sp. nov. isolated from freshwater sediment. . Int J Syst Evol Microbiol 61:, 2464–2468. [CrossRef][PubMed]
    [Google Scholar]
  4. Balkwill D. L., Drake G. R., Reeves R. H., Fredrickson J. K., White D. C., Ringelberg D. B., Chandler D. P., Romine M. F., Kennedy D. W., Spadoni C. M.. ( 1997;). Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov.. Int J Syst Bacteriol 47:, 191–201. [CrossRef][PubMed]
    [Google Scholar]
  5. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  6. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Kämpfer P., Denner E. B. M.. ( 1999;). Chemotaxonomic characterisation of Sphingomonas. . J Ind Microbiol Biotechnol 23:, 242–251. [CrossRef][PubMed]
    [Google Scholar]
  8. Button D. K.. ( 1993;). Nutrient-limited microbial growth kinetics: overview and recent advances. . Antonie van Leeuwenhoek 63:, 225–235. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 2005;). phylip (phylogeny inference package) version 3.6. Distributed by the author. . Department of Genome Sciences, University of Washington;, Seattle:.
  11. Fujii K., Satomi M., Morita N., Motomura T., Tanaka T., Kikuchi S.. ( 2003;). Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. . Int J Syst Evol Microbiol 53:, 47–52. [CrossRef][PubMed]
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  13. Glaeser S. P., Kämpfer P., Busse H.-J., Langer S., Glaeser J.. ( 2009;). Novosphingobium acidiphilum sp. nov., an acidophilic salt-sensitive bacterium isolated from the humic acid-rich Lake Grosse Fuchskuhle. . Int J Syst Evol Microbiol 59:, 323–330. [CrossRef][PubMed]
    [Google Scholar]
  14. Glaeser S. P., Bolte K., Martin K., Busse H.-J., Grossart H.-P., Kämpfer P., Glaeser J.. ( 2012;). Novosphingobium fuchskuhlense sp. nov. isolated from the north-east basin of Lake Grosse Fuchskuhle. . Int J Syst Evol Microbiol 63:, 586–592. [CrossRef][PubMed]
    [Google Scholar]
  15. Gupta S. K., Lal D., Lal R.. ( 2009;). Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. . Int J Syst Evol Microbiol 59:, 156–161. [CrossRef][PubMed]
    [Google Scholar]
  16. Hasegawa M., Kishino H., Yano T.. ( 1985;). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. . J Mol Evol 22:, 160–174. [CrossRef][PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  19. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  20. Kämpfer P., Witzenberger R., Denner E. B. M., Busse H.-J., Neef A.. ( 2002;). Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. . Syst Appl Microbiol 25:, 37–45. [CrossRef][PubMed]
    [Google Scholar]
  21. Kämpfer P., Young C. C., Busse H.-J., Lin S. Y., Rekha P. D., Arun A. B., Chen W. M., Shen F. T., Wu Y. H.. ( 2011;). Novosphingobium soli sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 259–263. [CrossRef][PubMed]
    [Google Scholar]
  22. Lim Y. W., Moon E. Y., Chun J.. ( 2007;). Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb. nov., with Novosphingobium subarcticum (Nohynek et al. 1996) Takeuchi et al. 2001 as a later heterotypic synonym. . Int J Syst Evol Microbiol 57:, 1906–1908. [CrossRef][PubMed]
    [Google Scholar]
  23. Liu Z.-P., Wang B.-J., Liu Y.-H., Liu S.-J.. ( 2005;). Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. . Int J Syst Evol Microbiol 55:, 1229–1232. [CrossRef][PubMed]
    [Google Scholar]
  24. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  25. Niharika N., Moskalikova H., Kaur J., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R.. ( 2012;). Novosphingobium barchaimii sp. nov., isolated from a hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 63:, 667–672. . [CrossRef]
    [Google Scholar]
  26. Saxena A., Anand S., Dua A., Sangwan N., Khan F., Lal R.. ( 2012;). Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH) -degrading bacterium isolated from HCH dumpsite. . Int J Syst Evol Microbiol (in press). [CrossRef][PubMed]
    [Google Scholar]
  27. Sohn J. H., Kwon K. K., Kang J. H., Jung H. B., Kim S. J.. ( 2004;). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. . Int J Syst Evol Microbiol 54:, 1483–1487. [CrossRef][PubMed]
    [Google Scholar]
  28. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  29. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov. . Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  30. Suzuki S., Hiraishi A.. ( 2007;). Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. . J Gen Appl Microbiol 53:, 221–228. [CrossRef][PubMed]
    [Google Scholar]
  31. Takeuchi M., Hamana K., Hiraishi A.. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51:, 1405–1417.[PubMed]
    [Google Scholar]
  32. Tiirola M. A., Busse H.-J., Kämpfer P., Männistö M. K.. ( 2005;). Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. . Int J Syst Evol Microbiol 55:, 583–588. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi.. FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  34. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  35. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  36. Yuan J., Lai Q., Zheng T., Shao Z.. ( 2009;). Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. . Int J Syst Evol Microbiol 59:, 2084–2088. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.048280-0
Loading
/content/journal/ijsem/10.1099/ijs.0.048280-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error