1887

Abstract

A novel Gram-stain-positive, moderately halophilic bacterium, designated strain E33, was isolated from water of the hypersaline lake Aran-Bidgol in Iran and characterized taxonomically using a polyphasic approach. Cells of strain E33 were motile rods and produced ellipsoidal endospores at a central or subterminal position in swollen sporangia. Strain E33 was a strictly aerobic bacterium, catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 0.5–25 % (w/v), with optimum growth occurring at 5–15 % (w/v) NaCl. The optimum temperature and pH for growth were 40 °C and pH 7.5–8.0, respectively. On the basis of 16S rRNA gene sequence analysis, strain E33 was shown to belong to the genus within the phylum and showed the closest phylogenetic similarity with the species 4T19 (99.2 %), D-1-5a (97.3 %) and SW-211 (97.2 %). The DNA G+C content of the type strain of the novel species was 42.6 mol%. The major cellular fatty acids of strain E33 were anteiso-C and iso-C, and the polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids, an unknown lipid and an unknown phospholipid. The isoprenoid quinones were MK-7 (97 %), MK-6 (2 %) and MK-8 (0.5 %). The peptidoglycan contained -diaminopimelic acid as the diagnostic diamino acid. All these features confirm the placement of isolate E33 within the genus . DNA–DNA hybridization experiments revealed low levels of relatedness between strain E33 and IBRC-M 10590 (22 %), CCM 7228 (38 %) and DSM 16303 (19 %). On the basis of polyphasic evidence from this study, a novel species of the genus , sp. nov. is proposed, with strain E33 ( = IBRC-M 10095 = DSM 25387) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046961-0
2013-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2776.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046961-0&mimeType=html&fmt=ahah

References

  1. Amoozegar M. A., Makhdoumi-Kakhki A., Shahzadeh Fazeli S. A., Azarbaijani R., Ventosa A.. ( 2012;). Halopenitus persicus gen. nov., sp. nov., an archaeon from an inland salt lake. . Int J Syst Evol Microbiol 62:, 1932–1936. [CrossRef][PubMed]
    [Google Scholar]
  2. Arahal D. R., Ventosa A.. ( 2002;). Moderately halophilic and halotolerant species of Bacillus and related genera. . In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by: Berkeley R., Heyndrickx M., Logan N., De Vos P... Oxford:: Blackwell;. [CrossRef]
    [Google Scholar]
  3. Bagheri M., Didari M., Amoozegar M. A., Schumann P., Sanchez-Porro C., Mehrshad M., Ventosa A.. ( 2012;). Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. . Int J Syst Evol Microbiol 62:, 811–816. [CrossRef][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen Y.-G., Zhang Y.-Q., He J.-W., Klenk H.-P., Xiao J.-Q., Zhu H.-Y., Tang S.-K., Li W.-J.. ( 2011;). Bacillus hemicentroti sp. nov., a moderate halophile isolated from a sea urchin. . Int J Syst Evol Microbiol 61:, 2950–2955. [CrossRef][PubMed]
    [Google Scholar]
  6. de la Haba R., Sánchez-Porro C., Márquez M., Ventosa A.. ( 2011;). Taxonomy of halophiles. . In Extremophiles handbook, pp. 255–308. Edited by Horikoshi K... Tokyo:: Springer;. [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  8. Didari M., Amoozegar M. A., Bagheri M., Schumann P., Spröer C., Sánchez-Porro C., Ventosa A.. ( 2012;). Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. . Int J Syst Evol Microbiol 62:, 2691–2697. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  11. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  12. Harrigan W. F., McCance M. E.. ( 1976;). Laboratory Methods in Food and Dairy Microbiology. London:: Academic Press;.
    [Google Scholar]
  13. Huß V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  14. Kämpfer P., Rosseló-Mora R., Falsen E., Busse H. J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of “paenibacillus hongkongensis as Cohnella hongkongensis sp. nov.,. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Kwon S.-W., Lee S.-Y., Kim B.-Y., Weon H.-Y., Kim J.-B., Go S. J., Lee G.-B.. ( 2007;). Bacillus niabensis sp. nov., isolated from cotton-waste composts for mushroom cultivation. . Int J Syst Evol Microbiol 57:, 1909–1913. [CrossRef][PubMed]
    [Google Scholar]
  17. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  19. Makhdoumi-Kakhki A., Amoozegar M. A., Kazemi B., Pašić L., Ventosa A.. ( 2012;). Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. . Microbes Environ 27:, 87–93. [CrossRef][PubMed]
    [Google Scholar]
  20. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  21. Márquez M. C., Sánchez-Porro C., Ventosa A.. ( 2011;). Halophilic and haloalkaliphilic, aerobic endospore-forming bacteria in soil. . In Endospore-forming Soil Bacteria, pp. 309–339. Edited by Logan N. A., De Vos P... Berlin:: Springer;. [CrossRef]
    [Google Scholar]
  22. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. ( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  24. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S.. ( 2003;). Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. . Int J Syst Evol Microbiol 53:, 569–576. [CrossRef][PubMed]
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1984;). Deleya halophila, a new species of moderately halophilic bacteria. . Int J Syst Bacteriol 34:, 287–292. [CrossRef]
    [Google Scholar]
  27. Rhuland L. E., Work E., Denman R., Hoare D.. ( 1955;). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Ventosa A.. ( 2006;). Unusual micro-organisms from unusual habitats: hypersaline environments. . In Prokaryotic Diversity: Mechanisms and significance, pp. 223–253. Edited by Logan N. A., Lappin-Scott H. M., Oyston P. C. F... Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  31. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  32. Ventosa A., Nieto J. J., Oren A.. ( 1998;). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
  33. Wayne L., Brenner D., Colwell R., Grimont P., Kandler O., Krichevsky M., Moore L., Moore W., Murray R.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  34. Wieser M., Worliczek H., Kämpfer P., Busse H. J.. ( 2005;). Bacillus herbersteinensis sp. nov. . Int J Syst Evol Microbiol 55:, 2119–2123. [CrossRef][PubMed]
    [Google Scholar]
  35. Xue Y., Ventosa A., Wang X., Ren P., Zhou P., Ma Y.. ( 2008;). Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. . Int J Syst Evol Microbiol 58:, 2828–2832. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046961-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046961-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error