1887

Abstract

Bacterial heart rot of pineapple reported in Hawaii in 2003 and reoccurring in 2006 was caused by an undetermined species of . Classification of the bacterial strains isolated from infected pineapple to one of the recognized species and their phylogenetic relationships with were determined by a multilocus sequence analysis (MLSA), based on the partial gene sequences of , , , and . Individual and concatenated gene phylogenies revealed that the strains form a clade with reference sp. isolated from pineapple in Malaysia and are closely related to ; however, previous DNA–DNA reassociation values suggest that these strains do not meet the genomic threshold for consideration in , and require further taxonomic analysis. An analysis of the markers used in this MLSA determined that was the best overall marker for resolution of species within . Differential intraspecies resolution was observed with the other markers, suggesting that marker selection is important for defining relationships within a clade. Phylogenies produced with gene sequences from the sequenced genomes of strains Ech586, Ech703 and Ech1591 did not place the sequenced strains with members of other well-characterized members of their respective species. The average nucleotide identity (ANI) and tetranucleotide frequencies determined for the sequenced strains corroborated the results of the MLSA that Ech586 and Ech703 should be reclassified as Ech586 and Ech703, respectively, whereas Ech1591 should be reclassified as Ech1591.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046490-0
2013-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3524.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046490-0&mimeType=html&fmt=ahah

References

  1. Adriaenssens E. M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P.-J., De Proft M., Kropinski A. M., Noben J.-P., Maes M., Lavigne R.. ( 2012;). T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. . PLoS ONE 7:, e33227. [CrossRef][PubMed]
    [Google Scholar]
  2. Baker R. H., DeSalle R.. ( 1997;). Multiple sources of character information and the phylogeny of Hawaiian drosophilids. . Syst Biol 46:, 654–673. [CrossRef][PubMed]
    [Google Scholar]
  3. Boccara M., Vedel R., Lalo D., Lebrun M.-H., Lafay J. F.. ( 1991;). Genetic diversity and host range in strains of Erwinia chrysanthemi. . Mol Plant Microbe Interact 4:, 293–299. [CrossRef]
    [Google Scholar]
  4. Brady C., Cleenwerck I., Venter S., Vancanneyt M., Swings J., Coutinho T.. ( 2008;). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). . Syst Appl Microbiol 31:, 447–460. [CrossRef][PubMed]
    [Google Scholar]
  5. Brady C. L., Cleenwerck I., Denman S., Venter S. N., Rodríguez-Palenzuela P., Coutinho T. A., De Vos P.. ( 2012;). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. . Int J Syst Evol Microbiol 62:, 1592–1602. [CrossRef][PubMed]
    [Google Scholar]
  6. Charkowski A. O.. ( 2006;). The soft rot Erwinia. . In Plant-Associated Bacteria, pp. 423–439. Edited by Gnanamanickam S. S... Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  7. Dauga C.. ( 2002;). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. . Int J Syst Evol Microbiol 52:, 531–547.[PubMed]
    [Google Scholar]
  8. de Queiroz A., Donoghue M. J., Kim J.. ( 1995;). Separate versus combined analysis of phylogenetic evidence. . Annu Rev Ecol Syst 26:, 657–681. [CrossRef]
    [Google Scholar]
  9. Dickey R. S.. ( 1981;). Erwinia chrysanthemi: reaction of eight plant species to strains from several hosts and to strains of other Erwinia species. . Phytopathology 71:, 23–29. [CrossRef]
    [Google Scholar]
  10. Farris J. S., Källersjö M., Kluge A. G., Bult C.. ( 1994;). Testing significance of incongruence. . Cladistics 10:, 315–319. [CrossRef]
    [Google Scholar]
  11. Feil E. J., Holmes E. C., Bessen D. E., Chan M.-S., Day N. P. J., Enright M. C., Goldstein R., Hood D. W., Kalia A.. & other authors ( 2001;). Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. . Proc Natl Acad Sci U S A 98:, 182–187. [CrossRef][PubMed]
    [Google Scholar]
  12. Glasner J. D., Rusch M., Liss P., Plunkett G. III, Cabot E. L., Darling A., Anderson B. D., Infield-Harm P., Gilson M. C., Perna N. T.. ( 2006;). asap: a resource for annotating, curating, comparing, and disseminating genomic data. . Nucleic Acids Res 34: (Suppl. 1), D41–D45. [CrossRef][PubMed]
    [Google Scholar]
  13. Glazunova O. O., Raoult D., Roux V.. ( 2010;). Partial recN gene sequencing: a new tool for identification and phylogeny within the genus Streptococcus. . Int J Syst Evol Microbiol 60:, 2140–2148. [CrossRef][PubMed]
    [Google Scholar]
  14. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  15. Kaneshiro W. S., Burger M., Vine B. G., de Silva A. S., Alvarez A. M.. ( 2008;). Characterization of Erwinia chyrsanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. . Plant Dis 92:, 1444–1450. [CrossRef]
    [Google Scholar]
  16. Kim H.-S., Ma B., Perna N. T., Charkowski A. O.. ( 2009;). Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. . Appl Environ Microbiol 75:, 4539–4549. [CrossRef][PubMed]
    [Google Scholar]
  17. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102:, 2567–2572. [CrossRef][PubMed]
    [Google Scholar]
  18. Konstantinidis K. T., Ramette A., Tiedje J. M.. ( 2006;). Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. . Appl Environ Microbiol 72:, 7286–7293. [CrossRef][PubMed]
    [Google Scholar]
  19. Kuhnert P., Korczak B. M., Stephan R., Joosten H., Iversen C.. ( 2009;). Phylogeny and prediction of genetic similarity of Cronobacter and related taxa by multilocus sequence analysis (MLSA). . Int J Food Microbiol 136:, 152–158. [CrossRef][PubMed]
    [Google Scholar]
  20. Ma B., Hibbing M. E., Kim H.-S., Reedy R. M., Yedidia I., Breuer J., Breuer J., Glasner J. D., Perna N. T.. & other authors ( 2007;). Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya.. Phytopathology 97:, 1150–1163. [CrossRef][PubMed]
    [Google Scholar]
  21. Marrero G.. ( 2010;). Bacterial heart rot of pineapple and the genus Dickeya. . MS thesis, University of Hawaii at Manoa;, Honolulu, HI, USA:.
  22. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A.. ( 2008;). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). . Int J Syst Evol Microbiol 58:, 200–214. [CrossRef][PubMed]
    [Google Scholar]
  23. Menna P., Barcellos F. G., Hungria M.. ( 2009;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef][PubMed]
    [Google Scholar]
  24. Nhung P. H., Ohkusu K., Mishima N., Noda M., Shah M. M., Sun X., Hayashi M., Ezaki T.. ( 2007;). Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. . Diag Microbiol Infect Dis 58:, 152–161. [CrossRef][PubMed]
    [Google Scholar]
  25. Ochman H., Lawrence J. G., Groisman E. A.. ( 2000;). Lateral gene transfer and the nature of bacterial innovation. . Nature 405:, 299–304. [CrossRef][PubMed]
    [Google Scholar]
  26. Parkinson N., Stead D., Bew J., Heeney J., Tsror Lahkim L., Elphinstone J.. ( 2009;). Dickeya species relatedness and clade structure determined by comparison of recA sequences. . Int J Syst Evol Microbiol 59:, 2388–2393. [CrossRef][PubMed]
    [Google Scholar]
  27. Peckham G. D., Kaneshiro W. S., Luu V., Berestecky J. M., Alvarez A. M.. ( 2010;). Specificity of monoclonal antibodies to strains of Dickeya sp. that cause bacterial heart rot of pineapple. . Hybridoma (Larchmt) 29:, 383–389. [CrossRef][PubMed]
    [Google Scholar]
  28. Posada D., Crandall K. A.. ( 1998;). modeltest: testing the model of DNA substitution. . Bioinformatics 14:, 817–818. [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  30. Samson R., Legendre J. B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L.. ( 2005;). Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov.. Int J Syst Evol Microbiol 55:, 1415–1427. [CrossRef][PubMed]
    [Google Scholar]
  31. Sarkar S. F., Guttman D. S.. ( 2004;). Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. . Appl Environ Microbiol 70:, 1999–2012. [CrossRef][PubMed]
    [Google Scholar]
  32. Sarkar I. N., Egan M. G., Coruzzi G., Lee E. K., DeSalle R.. ( 2008;). Automated simultaneous analysis phylogenetics (asap): an enabling tool for phlyogenomics. . BMC Bioinformatics 9:, 103. [CrossRef][PubMed]
    [Google Scholar]
  33. Schneider K. L., Marrero G., Alvarez A. M., Presting G. G.. ( 2011;). Classification of plant associated bacteria using RIF, a computationally derived DNA marker. . PLoS One 6:, e18496. [CrossRef][PubMed]
    [Google Scholar]
  34. Slabbinck B., Dawyndt P., Martens M., De Vos P., De Baets B.. ( 2008;). TaxonGap: a visualization tool for intra- and inter-species variation among individual biomarkers. . Bioinformatics 24:, 866–867. [CrossRef][PubMed]
    [Google Scholar]
  35. Slawiak M., van Beckhoven J. R. C. M., Speksnijder A. G. C. L., Czajkowski R., Grzegorz G., van der Wolf J. M.. ( 2009;). Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. . Eur J Plant Pathol 125:, 245–261. [CrossRef]
    [Google Scholar]
  36. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  37. Stöver B. C., Müller K. F.. ( 2010;). TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. . BMC Bioinformatics 11:, 7. [CrossRef][PubMed]
    [Google Scholar]
  38. Swofford D. L.. ( 2002;). paup*: Phylogenetic analysis using parsimony (and other methods), version 4.0b10. . Sunderland, MA:: Sinauer Associates;.
  39. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  40. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  41. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  42. Van Vaerenbergh J., Baeyen S., De Vos P., Maes M.. ( 2012;). Sequence diversity in the Dickeya fliC gene: phylogeny of the Dickeya genus and TaqMan® PCR for ‘D. solani’, new biovar 3 variant on potato in Europe. . PLoS ONE 7:, e35738. [CrossRef][PubMed]
    [Google Scholar]
  43. Wilton S. D., Lim L., Dye D., Laing N.. ( 1997;). Bandstab: a PCR-based alternative to cloning PCR products. . Biotechniques 22:, 642–645.[PubMed]
    [Google Scholar]
  44. Young J. M., Park D.-C., Shearman H. M., Fargier E.. ( 2008;). A multilocus sequence analysis of the genus Xanthomonas. . Syst Appl Microbiol 31:, 366–377. [CrossRef][PubMed]
    [Google Scholar]
  45. Zeigler D. R.. ( 2003;). Gene sequences useful for predicting relatedness of whole genomes in bacteria. . Int J Syst Evol Microbiol 53:, 1893–1900. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046490-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046490-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error