1887

Abstract

Gram-negative strains, motile by a single polar flagellum, non-pigmented and with a curved rod-shaped morphology, designated IMCC1826 and IMCC1883, were isolated from a surface seawater sample from the Yellow Sea. The two strains shared 99.9 % 16S rRNA gene sequence similarity and showed 92 % DNA–DNA relatedness, suggesting that they belonged to the same genomic species. Phylogenetic analysis based on 16S rRNA gene sequences showed that the two isolates were related most closely to the type strain of with a sequence similarity of 96.4 % and formed a robust phyletic lineage with DNA–DNA relatedness between the two strains and DSM 14913 was 8.7–11.6 %. A putative alkane hydroxylase () gene was detected in strain IMCC1826 by PCR, but the amino acid sequence of the gene was distantly related to that of the AlkB homologue of DSM 14913. As expected from the presence of the gene, the new strains utilized -tetradecane and -hexadecane as a carbon source. The DNA G+C content was 54.6–56.0 mol% and the main isoprenoid quinone detected was Q-9. Polar lipids of strain IMCC1826 included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and amino-group-containing lipids. On the basis of taxonomic data obtained in this study, strains IMCC1826 and IMCC1883 represent a novel species of the genus , for which the name sp. nov. is proposed, with IMCC1826 ( = KCTC 23084 = NBRC 107590) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.046383-0
2013-06-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2234.html?itemId=/content/journal/ijsem/10.1099/ijs.0.046383-0&mimeType=html&fmt=ahah

References

  1. Cho J.-C., Giovannoni S. J.. ( 2003;). Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. . Int J Syst Evol Microbiol 53:, 1031–1036. [CrossRef][PubMed]
    [Google Scholar]
  2. Choo Y.-J., Lee K., Song J., Cho J.-C.. ( 2007;). Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. . Int J Syst Evol Microbiol 57:, 532–537. [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  5. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–32. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  6. Kim O. S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  7. Kloos K., Munch J. C., Schloter M.. ( 2006;). A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. . J Microbiol Methods 66:, 486–496. [CrossRef][PubMed]
    [Google Scholar]
  8. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  9. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  10. McKew B. A., Coulon F., Osborn A. M., Timmis K. N., McGenity T. J.. ( 2007;). Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. . Environ Microbiol 9:, 165–176. [CrossRef][PubMed]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  12. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  13. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  14. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T.. ( 2002;). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov.. Int J Syst Evol Microbiol 52:, 739–747. [CrossRef][PubMed]
    [Google Scholar]
  15. Swofford, D. L. (2002). paup*: Phylogenetic analysis using parsimony (and other methods), version 4. Sunderland, MA: Sinauer Associates.
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  17. Van Beilen J. B., Li Z., Duetz W. A., Smits T. H. M., Witholt B.. ( 2003;). Diversity of alkane hydroxylase systems in the environment. . Oil Gas Sci Technol Rev 58:, 427–440. [CrossRef]
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  19. Yakimov M. M., Giuliano L., Denaro R., Crisafi E., Chernikova T. N., Abraham W.-R., Luensdorf H., Timmis K. N., Golyshin P. N.. ( 2004;). Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. . Int J Syst Evol Microbiol 54:, 141–148. [CrossRef][PubMed]
    [Google Scholar]
  20. Yakimov M. M., Denaro R., Genovese M., Cappello S., D’Auria G., Chernikova T. N., Timmis K. N., Golyshin P. N., Giluliano L.. ( 2005;). Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. . Environ Microbiol 7:, 1426–1441. [CrossRef][PubMed]
    [Google Scholar]
  21. Yakimov M. M., Timmis K. N., Golyshin P. N.. ( 2007;). Obligate oil-degrading marine bacteria. . Curr Opin Biotechnol 18:, 257–266. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.046383-0
Loading
/content/journal/ijsem/10.1099/ijs.0.046383-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error