1887

Abstract

A Gram-positive, spore-forming, aerobic, rod-shaped, xylanolytic bacterium designated strain CC-Alfalfa-35 was isolated from the rhizosphere of L. in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CC-Alfalfa-35 was affiliated to the genus . Strain CC-Alfalfa-35 shared 95.3 % pairwise 16S rRNA gene sequence similarity to the type strain of the type species of the genus ( DSM 17683) besides showing a similarity of 97.4–93.6 % with other recognized species of the genus . The DNA–DNA hybridization value between CC-Alfalfa-35 and KCTC 22296 was 37.7 %±1.7 % (reciprocal value, 55.7 %±3.0 %). Predominant cellular fatty acids were iso-C and anteiso-C. The polar lipid profile constituted diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, lysyl-phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. The major respiratory quinone was MK-7 and the DNA G+C content was 58.3 mol%. Strain CC-Alfalfa-35 contained -diaminopimelic acid as the major diamino acid in the cell-wall peptidoglycan. Based on the polar lipid and fatty acid profiles, which were in line with those of DSM 17683, coupled with additional distinguishing genotypic, phenotypic and chemotaxonomic features, strain CC-Alfalfa-35 is proposed to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is CC-Alfalfa-35 ( = JCM 18405 = BCRC 80428).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045831-0
2013-08-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/8/2806.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045831-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  2. Cai F. , Wang Y. , Qi H. , Dai J. , Yu B. , An H. , Rahman E. , Fang C. . ( 2010; ). Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. . Int J Syst Evol Microbiol 60:, 1605–1608. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cho E.-A. , Lee J.-S. , Lee K. C. , Jung H.-C. , Pan J.-G. , Pyun Y.-R. . ( 2007; ). Cohnella laeviribosi sp. nov., isolated from a volcanic pond. . Int J Syst Evol Microbiol 57:, 2902–2907. [CrossRef] [PubMed]
    [Google Scholar]
  4. Collins M. D. , Jones D. . ( 1980; ). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Microbiol 48:, 459–470. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M. . ( 1971; ). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. García-Fraile P. , Velázquez E. , Mateos P. F. , Martínez-Molina E. , Rivas R. . ( 2008; ). Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella . . Int J Syst Evol Microbiol 58:, 1855–1859. [CrossRef] [PubMed]
    [Google Scholar]
  9. Jiang F. , Dai J. , Wang Y. , Xue X. , Xu M. , Li W. , Fang C. , Peng F. . ( 2012; ). Cohnella arctica sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol 62:, 817–821. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  11. Kämpfer P. , Rosselló-Mora R. , Falsen E. , Busse H.-J. , Tindall B. J. . ( 2006; ). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef] [PubMed]
    [Google Scholar]
  12. Khianngam S. , Tanasupawat S. , Akaracharanya A. , Kim K. K. , Lee K. C. , Lee J.-S. . ( 2010a; ). Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. . Int J Syst Evol Microbiol 60:, 2284–2287. [CrossRef] [PubMed]
    [Google Scholar]
  13. Khianngam S. , Tanasupawat S. , Akaracharanya A. , Kim K. K. , Lee K. C. , Lee J.-S. . ( 2010b; ). Cohnella xylanilytica sp. nov. and Cohnella terrae sp. nov., xylanolytic bacteria from soil. . Int J Syst Evol Microbiol 60:, 2913–2917. [CrossRef] [PubMed]
    [Google Scholar]
  14. Khianngam S. , Tanasupawat S. , Akaracharanya A. , Kim K. K. , Lee K. C. , Lee J.-S. . ( 2012; ). Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. . Int J Syst Evol Microbiol 62:, 1921–1925. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim Y. , Han M. K. , Oh H. W. , Bae K. S. , Jeong T.-S. , Kim S. U. , Shin D.-H. , Kim I.-H. , Rhee Y. H. . & other authors ( 2010a; ). Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. . Bioresour Technol 101:, 8814–8821. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kim S.-J. , Weon H.-Y. , Kim Y.-S. , Anandham R. , Jeon Y.-A. , Hong S.-B. , Kwon S.-W. . ( 2010b; ). Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. . Int J Syst Evol Microbiol 60:, 526–530. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kim S.-J. , Weon H.-Y. , Kim Y.-S. , Kwon S.-W. . ( 2011; ). Cohnella soli sp. nov. and Cohnella suwonensis sp. nov. isolated from soil samples in Korea. . J Microbiol 49:, 1033–1038. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  20. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  21. Logan N. A. , Berge O. , Bishop A. H. , Busse H.-J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. . & other authors ( 2009; ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  22. Luo X. , Wang Z. , Dai J. , Zhang L. , Fang C. . ( 2010; ). Cohnella damensis sp. nov., a motile xylanolytic bacteria isolated from a low altitude area in Tibet. . J Microbiol Biotechnol 20:, 410–414.[PubMed]
    [Google Scholar]
  23. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  24. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994; ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  28. Shiratori H. , Tagami Y. , Beppu T. , Ueda K. . ( 2010; ). Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. . Int J Syst Evol Microbiol 60:, 1344–1348. [CrossRef] [PubMed]
    [Google Scholar]
  29. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  30. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  33. Vandamme P. , Pot B. , Gillis M. , de Vos P. , Kersters K. , Swings J. . ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  34. Yoon J.-H. , Jung Y.-T. . ( 2012; ). Cohnella boryungensis sp. nov., isolated from soil. . Antonie van Leeuwenhoek 101:, 769–775. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yoon M.-H. , Ten L. N. , Im W.-T. . ( 2007; ). Cohnella panacarvi sp. nov., a xylanolytic bacterium isolated from ginseng cultivating soil. . J Microbiol Biotechnol 17:, 913–918.[PubMed]
    [Google Scholar]
  36. Young C.-C. , Kämpfer P. , Shen F.-T. , Lai W.-A. , Arun A. B. . ( 2005; ). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). . Int J Syst Evol Microbiol 55:, 423–426. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045831-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045831-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error