1887

Abstract

A Gram-reaction-positive, non-motile, non-spore-forming, catalase-negative, facultatively anaerobic, rod-shaped, β-glucosidase-producing lactic acid bacterium, designated strain THK-V8, was isolated from the Korean fermented food, Kimchi, and its taxonomic position was investigated by using a polyphasic approach. Strain THK-V8 was able to grow at 4–40 °C (optimum, 30 °C) and pH 4.0–7.0 (optimum, pH 6.0). Strain THK-V8 had the ability to transform ginsenoside Rb to Rd. On the basis of 16S rRNA gene sequence similarity data, strain THK-V8 was shown to belong to the genus . Strain THK-V8 was related to DCY50 (98.8 % sequence similarity), LMG 11984 (97.7 %), L13 (97.5 %), TMW1.1236 (97.3 %) and ATCC 14687 (97.2 %). Subsequently, sequence analysis of the RNA polymerase alpha subunit gene () confirmed that strain THK-V8 showed a maximum gene sequence similarity value of 93 % with LMG 6906. The G+C content of the genomic DNA was 47.8 mol%. The DNA–DNA hybridization values between strain THK-V8 and DCY50 and LMG 11984 were 46.1±4.9 % and 10.6±2.9 %, respectively. The major fatty acids were summed feature 7 (comprised of C cyclo ω10/19ω6), C, C and Cω9. The cell wall peptidoglycan was of the A4α -Lys–-Asp type. The phenotypic and molecular properties indicated that strain THK-V8 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is THK-V8 ( = KACC 16236 = JCM 18023).

Funding
This study was supported by the:
  • , Industrialization Support Program for Bio-technology of Agriculture and Forestry, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea , (Award 810006-03-2-CG100)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045799-0
2013-09-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3274.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045799-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. ( 1982 ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44, 992993.[PubMed]
    [Google Scholar]
  2. Bui T. P., Kim Y. J., In J. G., Yang D. C. ( 2011 ). Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. . Int J Syst Evol Microbiol 61, 772776. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cheigh H. S., Park K. Y., Lee C. Y. ( 1994 ). Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). . Crit Rev Food Sci Nutr 34, 175203. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989 ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39, 224229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [CrossRef]
    [Google Scholar]
  7. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41, 9598.
    [Google Scholar]
  8. Hiraga K., Ueno Y., Sukontasing S., Tanasupawat S., Oda K. ( 2008 ). Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. . Int J Syst Evol Microbiol 58, 16251629. [CrossRef] [PubMed]
    [Google Scholar]
  9. Kandler O., Weiss N. ( 1986 ). Genus Lactobacillus Beijerinck 1901, 212AL . . Bergey’s Manual of Systematic Bacteriology, vol. 2, 12091234. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  10. Kim J. M., Le N. T., Chung B. S., Park J. H., Bae J. W., Madsen E. L., Jeon C. O. ( 2008 ). Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. . Appl Environ Microbiol 74, 73137320. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., Yi H., Won S., Chun J. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kimura M. ( 1983 ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  13. Kumar S., Nei M., Dudley J., Tamura K. ( 2008 ). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9, 299306. [CrossRef] [PubMed]
    [Google Scholar]
  14. Lee J.-S., Chun C. O., Jung M.-C., Kim W.-S., Kim H.-J., Hector M., Kim S.-B., Park C.-S., Ahn J.-S. & other authors ( 1997 ). Classification of isolates originating from kimchi using carbon source utilization patterns. . J Microbiol Biotechnol 7, 6874.
    [Google Scholar]
  15. Lee Y. M., Kwon M. J., Kim J. K., Suh H. S., Choi J. S., Song Y. O. ( 2004 ). Isolation and identification of active principle in Chinese cabbage kimchi responsible for antioxidant activity. . Korean J Food Sci Technol 36, 129133.
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [CrossRef]
    [Google Scholar]
  17. Moore D. D., Dowhan D. ( 1995 ). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 211. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. . New York:: Wiley;.
    [Google Scholar]
  18. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J. ( 2007 ). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57, 27772789. [CrossRef] [PubMed]
    [Google Scholar]
  19. Park K. Y., Cheigh H. S. ( 2000 ). Antimutagenic and anticancer effects of lactic acid bacteria isolated from kimchi. . Bioindustry News 13, 8490.
    [Google Scholar]
  20. Rademaker J. L., Herbet H., Starrenburg M. J., Naser S. M., Gevers D., Kelly W. J., Hugenholtz J., Swings J., van Hylckama Vlieg J. E. ( 2007 ). Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting. . Appl Environ Microbiol 73, 71287137. [CrossRef] [PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  22. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. . Newark, DE:: MIDI, Inc.;
  23. Schaeffer A. B., Fulton M. D. ( 1933 ). A simplified method of staining endospores. . Science 77, 194. [CrossRef] [PubMed]
    [Google Scholar]
  24. Schleifer K. H., Kandler O. ( 1972 ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36, 407477.[PubMed]
    [Google Scholar]
  25. Sheo H. J., Seo Y. S. ( 2003 ). The antibacterial action of Chinese cabbage kimchi juice on Staphylococcus aureus, Salmonellla enteritidis, Vibrio parahaemolyticus and Enterobacter cloacae . . J Korean Soc Food Sci Nutr 32, 13511356. [CrossRef]
    [Google Scholar]
  26. So M. H., Kim Y. B. ( 1995 ). Identification of psychrophilic lactic acid bacteria isolated from kimchi. . Korean J Food Sci Technol 27, 495505.
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [CrossRef] [PubMed]
    [Google Scholar]
  28. Valcheva R., Korakli M., Onno B., Prévost H., Ivanova I., Ehrmann M. A., Dousset X., Gänzle M. G., Vogel R. F. ( 2005 ). Lactobacillus hammesii sp. nov., isolated from French sourdough. . Int J Syst Evol Microbiol 55, 763767. [CrossRef] [PubMed]
    [Google Scholar]
  29. Vancanneyt M., Naser S. M., Engelbeen K., De Wachter M., Van der Meulen R., Cleenwerck I., Hoste B., De Vuyst L., Swings J. ( 2006 ). Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov.. Int J Syst Evol Microbiol 56, 15531557. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045799-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045799-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error