1887

Abstract

A Gram-reaction-positive, non-motile, non-spore-forming, catalase-negative, facultatively anaerobic, rod-shaped, β-glucosidase-producing lactic acid bacterium, designated strain THK-V8, was isolated from the Korean fermented food, Kimchi, and its taxonomic position was investigated by using a polyphasic approach. Strain THK-V8 was able to grow at 4–40 °C (optimum, 30 °C) and pH 4.0–7.0 (optimum, pH 6.0). Strain THK-V8 had the ability to transform ginsenoside Rb to Rd. On the basis of 16S rRNA gene sequence similarity data, strain THK-V8 was shown to belong to the genus . Strain THK-V8 was related to DCY50 (98.8 % sequence similarity), LMG 11984 (97.7 %), L13 (97.5 %), TMW1.1236 (97.3 %) and ATCC 14687 (97.2 %). Subsequently, sequence analysis of the RNA polymerase alpha subunit gene () confirmed that strain THK-V8 showed a maximum gene sequence similarity value of 93 % with LMG 6906. The G+C content of the genomic DNA was 47.8 mol%. The DNA–DNA hybridization values between strain THK-V8 and DCY50 and LMG 11984 were 46.1±4.9 % and 10.6±2.9 %, respectively. The major fatty acids were summed feature 7 (comprised of C cyclo ω10/19ω6), C, C and Cω9. The cell wall peptidoglycan was of the A4α -Lys–-Asp type. The phenotypic and molecular properties indicated that strain THK-V8 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is THK-V8 ( = KACC 16236 = JCM 18023).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045799-0
2013-09-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/9/3274.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045799-0&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Bui T. P., Kim Y. J., In J. G., Yang D. C.. ( 2011;). Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. . Int J Syst Evol Microbiol 61:, 772–776. [CrossRef][PubMed]
    [Google Scholar]
  3. Cheigh H. S., Park K. Y., Lee C. Y.. ( 1994;). Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). . Crit Rev Food Sci Nutr 34:, 175–203. [CrossRef][PubMed]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  8. Hiraga K., Ueno Y., Sukontasing S., Tanasupawat S., Oda K.. ( 2008;). Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. . Int J Syst Evol Microbiol 58:, 1625–1629. [CrossRef][PubMed]
    [Google Scholar]
  9. Kandler O., Weiss N.. ( 1986;). Genus Lactobacillus Beijerinck 1901, 212AL. . Bergey’s Manual of Systematic Bacteriology, vol. 2:, 1209–1234. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  10. Kim J. M., Le N. T., Chung B. S., Park J. H., Bae J. W., Madsen E. L., Jeon C. O.. ( 2008;). Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. . Appl Environ Microbiol 74:, 7313–7320. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., Yi H., Won S., Chun J.. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  13. Kumar S., Nei M., Dudley J., Tamura K.. ( 2008;). mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. . Brief Bioinform 9:, 299–306. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee J.-S., Chun C. O., Jung M.-C., Kim W.-S., Kim H.-J., Hector M., Kim S.-B., Park C.-S., Ahn J.-S.. & other authors ( 1997;). Classification of isolates originating from kimchi using carbon source utilization patterns. . J Microbiol Biotechnol 7:, 68–74.
    [Google Scholar]
  15. Lee Y. M., Kwon M. J., Kim J. K., Suh H. S., Choi J. S., Song Y. O.. ( 2004;). Isolation and identification of active principle in Chinese cabbage kimchi responsible for antioxidant activity. . Korean J Food Sci Technol 36:, 129–133.
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  18. Naser S. M., Dawyndt P., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Vancanneyt M., Swings J.. ( 2007;). Identification of lactobacilli by pheS and rpoA gene sequence analyses. . Int J Syst Evol Microbiol 57:, 2777–2789. [CrossRef][PubMed]
    [Google Scholar]
  19. Park K. Y., Cheigh H. S.. ( 2000;). Antimutagenic and anticancer effects of lactic acid bacteria isolated from kimchi. . Bioindustry News 13:, 84–90.
    [Google Scholar]
  20. Rademaker J. L., Herbet H., Starrenburg M. J., Naser S. M., Gevers D., Kelly W. J., Hugenholtz J., Swings J., van Hylckama Vlieg J. E.. ( 2007;). Diversity analysis of dairy and nondairy Lactococcus lactis isolates, using a novel multilocus sequence analysis scheme and (GTG)5-PCR fingerprinting. . Appl Environ Microbiol 73:, 7128–7137. [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101. . Newark, DE:: MIDI, Inc.;
  23. Schaeffer A. B., Fulton M. D.. ( 1933;). A simplified method of staining endospores. . Science 77:, 194. [CrossRef][PubMed]
    [Google Scholar]
  24. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  25. Sheo H. J., Seo Y. S.. ( 2003;). The antibacterial action of Chinese cabbage kimchi juice on Staphylococcus aureus, Salmonellla enteritidis, Vibrio parahaemolyticus and Enterobacter cloacae. . J Korean Soc Food Sci Nutr 32:, 1351–1356. [CrossRef]
    [Google Scholar]
  26. So M. H., Kim Y. B.. ( 1995;). Identification of psychrophilic lactic acid bacteria isolated from kimchi. . Korean J Food Sci Technol 27:, 495–505.
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  28. Valcheva R., Korakli M., Onno B., Prévost H., Ivanova I., Ehrmann M. A., Dousset X., Gänzle M. G., Vogel R. F.. ( 2005;). Lactobacillus hammesii sp. nov., isolated from French sourdough. . Int J Syst Evol Microbiol 55:, 763–767. [CrossRef][PubMed]
    [Google Scholar]
  29. Vancanneyt M., Naser S. M., Engelbeen K., De Wachter M., Van der Meulen R., Cleenwerck I., Hoste B., De Vuyst L., Swings J.. ( 2006;). Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov.. Int J Syst Evol Microbiol 56:, 1553–1557. [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045799-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045799-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error