1887

Abstract

A Gram-positive-staining, aerobic, non-endospore-forming bacterium, isolated from Ullal coastal sand, Mangalore, Karnataka, India, on marine agar 2216, was studied in detail for its taxonomic position. Based on 16S rRNA gene sequence similarity comparisons, strain ZMA 19 was grouped into the genus with high 16S rRNA gene sequence similarities to all currently described species of the genus , (99.3 %), (98.8 %) (98.6 %). GyrB amino acid sequence-based analysis supported the phylogenetic position and also distinguished strain ZMA 19 from the three other species of the genus . Amino acid sequence similarities were only 85.6 to 89.5 % between strain ZMA 19 and the type strains of members of the genus , which shared higher similarities among each other (93.0 to 96.2 %). The chemotaxonomic characterization supported the allocation of the novel strain to the genus . The major menaquinone was MK-8. The polar lipid profile contained predominantly diphosphatidylglycerol and moderate amounts of phosphatidylglycerol. The diagnostic peptidoglycan diamino acid was lysine and the polyamine pattern contained spermidine and spermine. The major fatty acids were iso- and anteiso-branched fatty acids. DNA–DNA hybridization with the types strains LMG 24411, DSM 19037 and DSM 19038 resulted in values (reciprocal values in parentheses) of 26 % (29 %), 18 % (15 %) and 21 % (12 %), respectively. The results of physiological and biochemical tests allowed phenotypic differentiation of strain ZMA 19 from all other species of the genus . Thus, ZMA 19 represents a novel species of this genus, for which the name sp. nov. is proposed, with ZMA 19 ( = LMG 27071  = CCM 8429) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.045062-0
2013-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/7/2450.html?itemId=/content/journal/ijsem/10.1099/ijs.0.045062-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol 47:, 39–52. [CrossRef]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  4. Christensen W. B.. ( 1946;). Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. . J Bacteriol 52:, 461–466.[PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Hamana K.. ( 1999;). Polyamine distribution catalogues of clostridia, acetogenic anaerobes, actinobacteria, bacilli, heliobacteria and haloanaerobes within the Gram-positive eubacteria: distribution of spermine and agmatine in thermophiles and halophiles. . Microbiol Cult Collect 15:, 9–28.
    [Google Scholar]
  8. Hamana K., Niitsu M.. ( 1999;). Production of 2-phenylethylamine by decarboxylation of l-phenylalanine in alkaliphilic Bacillus cohnii. . J Gen Appl Microbiol 45:, 149–153. [CrossRef][PubMed]
    [Google Scholar]
  9. Hamana K., Akiba T., Uchino F., Matsuzaki S.. ( 1989;). Distribution of spermine in bacilli and lactic acid bacteria. . Can J Microbiol 35:, 450–455. [CrossRef][PubMed]
    [Google Scholar]
  10. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. . Comput Appl Biosci 8:, 275–282.[PubMed]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  12. Kämpfer P.. ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae. . Zentralbl Bakteriol 273:, 164–172. [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  15. Kämpfer P., Falsen E., Lodders N., Langer S., Busse H.-J., Schumann P.. ( 2010;). Ornithinibacillus contaminans sp. nov., an endospore-forming species. . Int J Syst Evol Microbiol 60:, 2930–2934. [CrossRef][PubMed]
    [Google Scholar]
  16. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  18. Manorama R., Pindi P. K., Reddy G. S. N., Shivaji S.. ( 2009;). Bhargavaea cecembensis gen. nov., sp. nov., isolated from the Chagos-Laccadive ridge system in the Indian Ocean. . Int J Syst Evol Microbiol 59:, 2618–2623. [CrossRef][PubMed]
    [Google Scholar]
  19. Moaledj K.. ( 1986;). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. . J Microbiol Methods 5:, 303–310. [CrossRef]
    [Google Scholar]
  20. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  21. Qiu F., Zhang X., Liu L., Sun L., Schumann P., Song W.. ( 2009;). Bacillus beijingensis sp. nov. and Bacillus ginsengi sp. nov., isolated from ginseng root. . Int J Syst Evol Microbiol 59:, 729–734. [CrossRef][PubMed]
    [Google Scholar]
  22. Schleifer K. P.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  25. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov.. Int J Syst Evol Microbiol 57:, 572–576. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  29. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  30. Verma P., Pandey P. K., Gupta A. K., Seong C. N., Park S. C., Choe H. N., Baik K. S., Patole M. S., Shouche Y. S.. ( 2012;). Reclassification of Bacillus beijingensis Qiu et al. 2009 and Bacillus ginsengi Qiu et al. 2009 as Bhargavaea beijingensis comb. nov. and Bhargavaea ginsengi comb. nov. and emended description of the genus Bhargavaea. . Int J Syst Evol Microbiol 62:, 2495–2504. [CrossRef][PubMed]
    [Google Scholar]
  31. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  32. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.045062-0
Loading
/content/journal/ijsem/10.1099/ijs.0.045062-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error