1887

Abstract

Two Gram-positive, non-endospore-forming rods, strains C5 and T8 were isolated from the phyllospheres of and , respectively, and were studied in detail for their taxonomic position. 16S rRNA gene sequence analysis allocated both isolates clearly to the genus . Isolate C5 was most closely related to and , showing 99.2 % gene sequence similarity to both species. Strain T8 revealed the highest 16S rRNA gene sequence similarity to (98.8 %) and (98.6 %). The quinone system of both strains was composed of dihydrogenated menaquinones with eight (major amount) as well as nine, seven and six isoprenoid units (MK-8H, MK-9H MK-7H MK-6H).The polar lipid profiles of strains C5 and T8 consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unknown phospholipid. Additionally, strain C5 contained one unknown glycolipid, and strain T8 three unknown aminolipids. The fatty acid profiles contained major amounts of C, Cω9 and 10-methyl C, which supported the grouping of the two isolates in the genus . Physiological/biochemical characterization and DNA–DNA hybridizations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation of both strains. For this reason, we propose strain C5 ( = LMG 26203  = CCM 7906) as the type strain of a novel species with the name sp. nov., and strain T8 ( = LMG 26204  = CCM 7905) as the type strain of a second novel species with the name sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044958-0
2013-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/3/1024.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044958-0&mimeType=html&fmt=ahah

References

  1. Alashamaony L., Goodfellow M., Minnikin D. E.. ( 1976;). Free mycolic acids as criteria in the classification of Nocardia and the ‘rhodochrous’ complex. . J Gen Microbiol 92:, 188–199. [CrossRef][PubMed]
    [Google Scholar]
  2. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  3. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1979;). Isoprenoid quinones in the classification of coryneform and related bacteria. . J Gen Microbiol 110:, 127–136. [CrossRef][PubMed]
    [Google Scholar]
  4. Fischer M., Bossdorf O., Gockel S., Hänsel F., Hemp A., Hessenmöller D., Korte G., Nieschulze J., Pfeiffer S.. & other authors ( 2010;). Implementing large-scale and long-term functional biodiversity research: The biodiversity exploratories. . Basic Appl Ecol 11:, 473–485. [CrossRef]
    [Google Scholar]
  5. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  8. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21:, 227–251. [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J.. ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. . Int J Syst Evol Microbiol 53:, 93–97. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Klatte S., Rainey F. A., Kroppenstedt R. M.. ( 1994;). Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov.. Int J Syst Bacteriol 44:, 769–773. [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing nucleic acid techniques in bacterial systematics. . In Nucleic acid techniques in bacterial systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  13. Lechevallier M. P., De Bievre C., Lechevallier H. A.. ( 1977;). Chemotaxonomy of aerobic Actinomycetes: Phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  15. Martin K., Schäfer J., Kämpfer P.. ( 2010;). Promicromonospora umidemergens sp. nov., isolated from moisture from indoor wall material. . Int J Syst Evol Microbiol 60:, 537–541. [CrossRef][PubMed]
    [Google Scholar]
  16. Minnikin D. E., Alshamaony L., Goodfellow M.. ( 1975;). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. . J Gen Microbiol 88:, 200–204. [CrossRef][PubMed]
    [Google Scholar]
  17. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  18. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R.. ( 1994;). fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  19. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  23. Zhi X. Y., Li W.-J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef][PubMed]
    [Google Scholar]
  24. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044958-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044958-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error