1887

Abstract

A Gram-stain-negative, rod-shaped, non-motile and yellow-pigmented bacterial strain, designated strain JJ013, was isolated from an artificial lake in Jeollabuk-do, South Korea, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain JJ013 indicated that the isolate belonged to the family and exhibited similarity levels of 96.6 % to the type strains of and and 96.5 % to the type strain of . Growth was observed at 20–30 °C and pH 5.0–7.0. The major cellular fatty acids of the novel strain were iso-C (27.5 %), iso-C G (17.8 %), iso-C 3-OH (9.4 %) and iso-C 3-OH (9.2 %). Flexirubin-type pigments were present. The DNA G+C content of strain JJ013 was 33.9 mol%, the major respiratory quinone was menaquinone-6 (MK-6) and the major polyamine was -homospermidine. The polar lipid profile of the strain JJ013 consisted of a phosphatidylethanolamine (PE), two unknown aminolipids (AL1–2), three unidentified lipid (L1–3) and an unknown glycolipid (GL). On the basis of the morphological and physiological properties and biochemical evidence presented, it is concluded that strain JJ013 represents a novel species of the genus for which the name sp. nov. is proposed; the type strain is JJ013 ( = KACC 16594 = JCM 18211). Since C, which is known as a predominant fatty acid of the genus was not detected in the novel strain and other reference strains, we propose an emended description of the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044495-0
2013-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1633.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044495-0&mimeType=html&fmt=ahah

References

  1. Ali Z. , Cousin S. , Frühling A. , Brambilla E. , Schumann P. , Yang Y. , Stackebrandt E. . ( 2009; ). Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. . Int J Syst Evol Microbiol 59:, 2610–2617. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anacker R. L. , Ordal E. J. . ( 1955; ). Study of a bacteriophage infecting the myxobacterium Chondrococcus columnaris . . J Bacteriol 70:, 738–741.[PubMed]
    [Google Scholar]
  3. Bernardet J. F. , Bowman J. P. . ( 2006; ). The genus Flavobacterium . . Prokaryotes 7:, 481–531. [CrossRef]
    [Google Scholar]
  4. Bernardet J.-F. , Segers P. , Vancanneyt M. , Berthe F. , Kersters K. , Vandamme P. . ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). . Int J Syst Bacteriol 46:, 128–148. [CrossRef]
    [Google Scholar]
  5. Bernardet J. F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bowman J. P. . ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  7. Collins M. D. . ( 1985; ). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . . London:: Academic Press;.
    [Google Scholar]
  8. Cousin S. , Päuker O. , Stackebrandt E. . ( 2007; ). Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. . Int J Syst Evol Microbiol 57:, 243–249. [CrossRef] [PubMed]
    [Google Scholar]
  9. Dong K. , Chen F. , Du Y. , Wang G. . ( 2013; ). Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense . . Int J Syst Evol Microbiol 63:, 886–892.[CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  12. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  13. Kim J. H. , Kim K. Y. , Cha C. J. . ( 2009; ). Flavobacterium chungangense sp. nov., isolated from a freshwater lake. . Int J Syst Evol Microbiol 59:, 1754–1758. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721.[CrossRef]
    [Google Scholar]
  15. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lata P. , Lal D. , Lal R. . ( 2012; ). Flavobacterium ummariense sp. nov., isolated from hexachlorocyclohexane-contaminated soil, and emended description of Flavobacterium ceti Vela et al. 2007. . Int J Syst Evol Microbiol 62:, 2674–2679. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lee S. , Weon H. Y. , Kim S. J. , Ahn T. Y. . ( 2011; ). Flavobacterium koreense sp. nov., Flavobacterium chungnamense sp. nov., and Flavobacterium cheonanense sp. nov., isolated from a freshwater reservoir. . J Microbiol 49:, 387–392. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lee S. , Weon H. Y. , Han K. , Ahn T. Y. . ( 2012; ). Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile . . Int J Syst Evol Microbiol 62:, 2378–2382. [CrossRef] [PubMed]
    [Google Scholar]
  19. Millar W. . ( 1973; ). Heterotrophic bacterial population in acid coal mine water: Flavobacterium acidurans sp. n. . Int J Syst Bacteriol 23:, 142–150. [CrossRef]
    [Google Scholar]
  20. Marchesi J. R. , Sato T. , Weightman A. J. , Martin T. A. , Fry J. C. , Hiom S. J. , Wade W. G. . ( 1998; ). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. . Appl Environ Microbiol 64:, 795–799. [CrossRef]
    [Google Scholar]
  21. Minnikin D. , O'Donnell A. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  22. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Scherer P. , Kneifel H. . ( 1983; ). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154:, 1315–1322.[PubMed]
    [Google Scholar]
  24. Sheu S. Y. , Chiu T. F. , Young C. C. , Arun A. B. , Chen W. M. . ( 2011; ). Flavobacterium macrobrachii sp. nov., isolated from a freshwater shrimp culture pond. . Int J Syst Evol Microbiol 61:, 1402–1407. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tamaoka J. , Katayama‐Fujimura Y. , Kuraishi H. . ( 1983; ). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Microbiol 54:, 31–36. [CrossRef]
    [Google Scholar]
  26. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  27. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tittsler R. P. , Sandholzer L. A. . ( 1936; ). The use of semi-solid agar for the detection of bacterial motility. . J Bacteriol 31:, 575–580.[PubMed]
    [Google Scholar]
  29. Wakabayashi H. , Huh G. , Kimura N. . ( 1989; ). Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. . Int J Syst Bacteriol 39:, 213–216. [CrossRef]
    [Google Scholar]
  30. Weon H. Y. , Song M. H. , Son J. A. , Kim B. Y. , Kwon S. W. , Go S. J. , Stackebrandt E. . ( 2007; ). Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. . Int J Syst Evol Microbiol 57:, 1594–1598. [CrossRef] [PubMed]
    [Google Scholar]
  31. Yang P. , De Vos P. , Kersters K. , Swings J. . ( 1993; ). Polyamine patterns as chemotaxonomic markers for the genus Xanthomonas . . Int J Syst Bacteriol 43:, 709–714. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044495-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044495-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error