1887

Abstract

A facultatively anaerobic organoheterotroph, designated JAM-BA0302, was isolated from a deep subseafloor sediment at a depth of 247.1 m below the seafloor off the Shimokita Peninsula of Japan in the north-western Pacific Ocean (Site C9001 , water depth 1180 m). Cells of strain JAM-BA0302 showed gliding motility and were thin, long rods with peritrichous fimbriae-like structures. Growth occurred at 4–37 °C (optimum 30 °C; doubling time 8 h), at pH 5.4–8.3 (optimum pH 7.5) and with 5–60 g NaCl l (optimum 20–25 g l). The isolate utilized proteinaceous substrates such as yeast extract, tryptone, casein and Casamino acids with O respiration or fermentation. Strain JAM-BA0302 was a piezotolerant bacterium that could grow at pressures as high as 25 MPa under aerobic conditions and 10 MPa under anaerobic conditions. The G+C content of the genomic DNA was 43.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JAM-BA0302 was most closely related to yet-undescribed strains recently isolated from various marine sedimentary environments (>99.6 % 16S rRNA gene sequence similarity) and was moderately related to DQHS-4, isolated from a sea cucumber farm sediment (95.5 % 16S rRNA gene sequence similarity) within the . The phylogenetic analysis suggested that the isolate should belong to the genus However, low DNA–DNA relatedness (<11 %) and many physiological and molecular properties differentiated the isolate from those previously described. We propose here a novel species of the genus , with the name sp. nov. The type strain is JAM-BA0302 ( = JCM 15547  = NCIMB 14481).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.044065-0
2013-05-01
2020-04-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/5/1602.html?itemId=/content/journal/ijsem/10.1099/ijs.0.044065-0&mimeType=html&fmt=ahah

References

  1. Aoike K. . ( 2007; ). CDEX Laboratory Operation Report: CK06–06 D/V Chikyu shakedown cruise offshore Shimokita: Yokohama (CDEX-JAMSTEC). http://sio7.jamstec.go.jp/JAMSTEC-exp-report/902/CK06-06_CR.pdf.
  2. Bale S. J. , Goodman K. , Rochelle P. A. , Marchesi J. R. , Fry J. C. , Weightman A. J. , Parkes R. J. . ( 1997; ). Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. . Int J Syst Bacteriol 47:, 515–521. [CrossRef] [PubMed]
    [Google Scholar]
  3. Batzke A. , Engelen B. , Sass H. , Cypionka H. . ( 2007; ). Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from Equatorial Pacific Ocean and Peru Margin sediments. . Geomicrobiol J 24:, 261–273. [CrossRef]
    [Google Scholar]
  4. Biddle J. F. , Lipp J. S. , Lever M. A. , Lloyd K. G. , Sørensen K. B. , Anderson R. , Fredricks H. F. , Elvert M. , Kelly T. J. . & other authors ( 2006; ). Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. . Proc Natl Acad Sci U S A 103:, 3846–3851. [CrossRef] [PubMed]
    [Google Scholar]
  5. D’Hondt S. , Rutherford S. , Spivack A. J. . ( 2002; ). Metabolic activity of subsurface life in deep-sea sediments. . Science 295:, 2067–2070. [CrossRef] [PubMed]
    [Google Scholar]
  6. D’Hondt S. , Jørgensen B. B. , Miller D. J. , Batzke A. , Blake R. , Cragg B. A. , Cypionka H. , Dickens G. R. , Ferdelman T. . & other authors ( 2004; ). Distributions of microbial activities in deep subseafloor sediments. . Science 306:, 2216–2221. [CrossRef] [PubMed]
    [Google Scholar]
  7. D’Hondt S. , Spivack A. J. , Pockalny R. , Ferdelman T. G. , Fischer J. P. , Kallmeyer J. , Abrams L. J. , Smith D. C. , Graham D. . & other authors ( 2009; ). Subseafloor sedimentary life in the South Pacific Gyre. . Proc Natl Acad Sci U S A 106:, 11651–11656.[PubMed] [CrossRef]
    [Google Scholar]
  8. DeLong E. F. . ( 1992; ). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fry J. C. , Parkes R. J. , Cragg B. A. , Weightman A. J. , Webster G. . ( 2008; ). Prokaryotic biodiversity and activity in the deep subseafloor biosphere. . FEMS Microbiol Ecol 66:, 181–196. [CrossRef] [PubMed]
    [Google Scholar]
  12. Futagami T. , Morono Y. , Terada T. , Kaksonen A. H. , Inagaki F. . ( 2009; ). Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments. . Appl Environ Microbiol 75:, 6905–6909. [CrossRef] [PubMed]
    [Google Scholar]
  13. Holmes D. E. , Nevin K. P. , Woodard T. L. , Peacock A. D. , Lovley D. R. . ( 2007; ). Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. . Int J Syst Evol Microbiol 57:, 701–707. [CrossRef] [PubMed]
    [Google Scholar]
  14. Inagaki F. . ( 2010; ). Deep subseafloor microbial communities. . In Encyclopedia of Life Sciences, pp. 1–10. Chichester:: John Wiley & Sons, Ltd;. [CrossRef]
    [Google Scholar]
  15. Inagaki F. , Nakagawa S. . ( 2008;). Spatial distribution of subseafloor life: diversity and biogeography. . In Links Between Geological Processes, Microbial Activities and Evolution of Life, pp. 135–158. Edited by Dilek Y. , Furnes H. , Muehlenbachs K. . . Dordrecht, The Netherlands:: Springer Science;. [CrossRef]
    [Google Scholar]
  16. Inagaki F. , Nunoura T. , Nakagawa S. , Teske A. , Lever M. , Lauer A. , Suzuki M. , Takai K. , Delwiche M. . & other authors ( 2006; ). Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. . Proc Natl Acad Sci U S A 103:, 2815–2820. [CrossRef] [PubMed]
    [Google Scholar]
  17. Irgens R. L. . ( 1977; ). Meniscus, a new genus of aerotolerant, gas-vacuolated bacteria. . Int J Syst Bacteriol 27:, 38–43. [CrossRef]
    [Google Scholar]
  18. Jørgensen B. B. , Boetius A. . ( 2007; ). Feast and famine – microbial life in the deep-sea bed. . Nat Rev Microbiol 5:, 770–781. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kendall M. M. , Liu Y. , Sieprawska-Lupa M. , Stetter K. O. , Whitman W. B. , Boone D. R. . ( 2006; ). Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. . Int J Syst Evol Microbiol 56:, 1525–1529. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kobayashi T. , Koide O. , Mori K. , Shimamura S. , Matsuura T. , Miura T. , Takaki Y. , Morono Y. , Nunoura T. . & other authors ( 2008; ). Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. . Extremophiles 12:, 519–527. [CrossRef] [PubMed]
    [Google Scholar]
  21. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  22. Lane D. J. . ( 1985; ). 16S/23S sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–176. Edited by Stackebrandt E. , Goodfellow M. . . New York:: John Wiley & Sons;.
    [Google Scholar]
  23. Lee Y.-J. , Wagner I. D. , Brice M. E. , Kevbrin V. V. , Mills G. L. , Romanek C. S. , Wiegel J. . ( 2005; ). Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. . Extremophiles 9:, 375–383. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lipp J. S. , Morono Y. , Inagaki F. , Hinrichs K. U. . ( 2008; ). Significant contribution of Archaea to extant biomass in marine subsurface sediments. . Nature 454:, 991–994. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  26. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  27. MIDI ( 1999; ). Sherlock Microbial Identification System, operating manual version 3.0. . Newark, DE:: MIDI, Inc.;
  28. Mikucki J. A. , Liu Y. , Delwiche M. , Colwell F. S. , Boone D. R. . ( 2003; ). Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarines sp. nov.. Appl Environ Microbiol 69:, 3311–3316. [CrossRef] [PubMed]
    [Google Scholar]
  29. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J. H. . ( 1984; ). An integrated procedure for extracting bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  30. Morono Y. , Terada T. , Masui N. , Inagaki F. . ( 2009; ). Discriminative detection and enumeration of microbial life in marine subsurface sediments. . ISME J 3:, 503–511. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nakagawa S. , Inagaki F. , Suzuki Y. , Steinsbu B. O. , Lever M. A. , Takai K. , Engelen B. , Sako Y. , Wheat C. G. , Horikoshi K. . ( 2006; ). Microbial community in black rust exposed to hot ridge flank crustal fluids. . Appl Environ Microbiol 72:, 6789–6799. [CrossRef] [PubMed]
    [Google Scholar]
  32. Parkes R. J. , Cragg B. A. , Wellsbury P. . ( 2000; ). Recent studies on bacterial populations and processes in subseafloor sediments: a review. . Hydrogeol J 8:, 11–28. [CrossRef]
    [Google Scholar]
  33. Parkes R. J. , Sellek G. , Webster G. , Martin D. , Anders E. , Weightman A. J. , Sass H. . ( 2009; ). Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG). . Environ Microbiol 11:, 3140–3153. [CrossRef] [PubMed]
    [Google Scholar]
  34. Porter K. G. , Feig Y. S. . ( 1980; ). The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:, 943–948. [CrossRef]
    [Google Scholar]
  35. Qu J.-H. , Yuan H.-L. , Yang J.-S. , Li H.-F. , Chen N. . ( 2009; ). Lacibacter cauensis gen. nov., sp. nov., a novel member of the phylum Bacteroidetes isolated from sediment of a eutrophic lake. . Int J Syst Evol Microbiol 59:, 1153–1157. [CrossRef] [PubMed]
    [Google Scholar]
  36. Qu L. , Zhu F. , Hong X. , Gao W. , Chen J. , Sun X. . ( 2011; ). Sunxiuqinia elliptica gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment of a sea cucumber farm. . Int J Syst Evol Microbiol 61:, 2885–2889. [CrossRef] [PubMed]
    [Google Scholar]
  37. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  38. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  39. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. . & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  40. Takai K. , Inoue A. , Horikoshi K. . ( 1999; ). Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. . Int J Syst Bacteriol 49:, 619–628. [CrossRef] [PubMed]
    [Google Scholar]
  41. Takai K. , Komatsu T. , Horikoshi K. . ( 2001; ). Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. . Int J Syst Evol Microbiol 51:, 1425–1435.[PubMed]
    [Google Scholar]
  42. Takai K. , Moyer C. L. , Miyazaki M. , Nogi Y. , Hirayama H. , Nealson K. H. , Horikoshi K. . ( 2005; ). Marinobacter alkaliphilus sp. nov., a novel alkaliphilic bacterium isolated from subseafloor alkaline serpentine mud from Ocean Drilling Program Site 1200 at South Chamorro Seamount, Mariana Forearc. . Extremophiles 9:, 17–27. [CrossRef] [PubMed]
    [Google Scholar]
  43. Takai K. , Nakamura K. , Toki T. , Tsunogai U. , Miyazaki M. , Miyazaki J. , Hirayama H. , Nakagawa S. , Nunoura T. , Horikoshi K. . ( 2008; ). Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. . Proc Natl Acad Sci U S A 105:, 10949–10954. [CrossRef] [PubMed]
    [Google Scholar]
  44. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  45. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  46. Teske A. . ( 2006; ). Microbial communities of deep marine subsurface sediments: Molecular and cultivation surveys. . Geomicrobiol J 23:, 357–368. [CrossRef]
    [Google Scholar]
  47. Toffin L. , Bidault A. , Pignet P. , Tindall B. J. , Slobodkin A. , Kato C. , Prieur D. . ( 2004; ). Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. . Int J Syst Evol Microbiol 54:, 1943–1949. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tomaru H. , Fehn U. , Lu Z. , Takeuchi R. , Inagaki F. , Imachi H. , Kotani R. , Matsumoto R. , Aoike K. . ( 2009; ). Dating of dissolved iodine in pore waters from the gas hydrate occurrence offshore Shimokita Peninsula, Japan: 129I results from the D/V Chikyu shakedown cruise. . Resource Geol 59:, 359–373. [CrossRef]
    [Google Scholar]
  49. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  50. Whitman W. B. , Coleman D. C. , Wiebe W. J. . ( 1998; ). Prokaryotes: the unseen majority. . Proc Natl Acad Sci U S A 95:, 6578–6583. [CrossRef] [PubMed]
    [Google Scholar]
  51. Zillig W. , Holz I. , Janekovic D. , Klenk H.-P. , Imsel E. , Trent J. , Wunderl S. , Forjaz V. H. , Coutinho R. , Ferreira T. . ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. . J Bacteriol 172:, 3959–3965.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.044065-0
Loading
/content/journal/ijsem/10.1099/ijs.0.044065-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error