1887

Abstract

The isolation and characterization of a novel, rapidly growing, scotochromogenic mycobacterial species is reported. Eight independent strains were isolated from clinical specimens from six different countries of the world, two in Iran, two in Italy and one in each of following countries: Greece, the Netherlands, Sweden and the USA. Interestingly, two of the strains were isolated from cerebrospinal fluid. The strains were characterized by rapid growth and presented orange-pigmented scotochromogenic colonies. DNA-based analysis revealed unique sequences in the four regions investigated: the 16S rRNA gene, the rRNA gene internal transcribed spacer 1 and the genes encoding the 65 kDa heat-shock protein and the beta-subunit of RNA polymerase. The phylogenetic analysis placed the strains among the rapidly growing mycobacteria, being most closely related to . The genotypic and phenotypic data both strongly supported the inclusion of the strains investigated here as members of a novel species within the genus ; the name sp. nov. is proposed to indicate the isolation in Iran of the first recognized strains. The type strain is M05 ( = DSM 45541 = CCUG 62053 = JCM 17461).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043562-0
2013-04-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1383.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043562-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Drancourt M.. ( 2004;). Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. . Int J Syst Evol Microbiol 54:, 2095–2105. [CrossRef][PubMed]
    [Google Scholar]
  2. Adékambi T., Colson P., Drancourt M.. ( 2003;). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. . J Clin Microbiol 41:, 5699–5708. [CrossRef][PubMed]
    [Google Scholar]
  3. Brown-Elliott B. A., Wallace R. J. Jr. ( 2002;). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. . Clin Microbiol Rev 15:, 716–746. [CrossRef][PubMed]
    [Google Scholar]
  4. CLSI ( 2011;). Susceptibility testing of mycobacteria, nocardiae and other aerobic actinomycetes; approved standard, 2nd edn. Wayne, PA: Clinical and Laboratory Standards Institute..
  5. De Groote M. A., Huitt G.. ( 2006;). Infections due to rapidly growing mycobacteria. . Clin Infect Dis 42:, 1756–1763. [CrossRef][PubMed]
    [Google Scholar]
  6. Devulder G., Pérouse de Montclos M., Flandrois J. P.. ( 2005;). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. . Int J Syst Evol Microbiol 55:, 293–302. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Kent P. T., Kubica G. P.. ( 1985;). Public health mycobacteriology. A guide for the level III laboratory. Atlanta:: US Department of Health and Human Services;.
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  10. Kirschner P., Springer B., Vogel U., Meier A., Wrede A., Kiekenbeck M., Bange F. C., Böttger E. C.. ( 1993;). Genotypic identification of mycobacteria by nucleic acid sequence determination: report of a 2-year experience in a clinical laboratory. . J Clin Microbiol 31:, 2882–2889.[PubMed]
    [Google Scholar]
  11. McNabb A., Eisler D., Adie K., Amos M., Rodrigues M., Stephens G., Black W. A., Isaac-Renton J.. ( 2004;). Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. . J Clin Microbiol 42:, 3000–3011. [CrossRef][PubMed]
    [Google Scholar]
  12. Mignard S., Flandrois J. P.. ( 2008;). A seven-gene, multilocus, genus-wide approach to the phylogeny of mycobacteria using supertrees. . Int J Syst Evol Microbiol 58:, 1432–1441. [CrossRef][PubMed]
    [Google Scholar]
  13. Rhodes M. W., Kator H., McNabb A., Deshayes C., Reyrat J. M., Brown-Elliott B. A., Wallace R. Jr, Trott K. A., Parker J. M. et al. ( 2005;). Mycobacterium pseudoshottsii sp. nov., a slowly growing chromogenic species isolated from Chesapeake Bay striped bass (Morone saxatilis). . Int J Syst Evol Microbiol 55:, 1139–1147. [CrossRef][PubMed]
    [Google Scholar]
  14. Roth A., Fischer M., Hamid M. E., Michalke S., Ludwig W., Mauch H.. ( 1998;). Differentiation of phylogenetically related slowly growing mycobacteria based on 16S–23S rRNA gene internal transcribed spacer sequences. . J Clin Microbiol 36:, 139–147.[PubMed]
    [Google Scholar]
  15. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  16. Sasser M.. ( 2001;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Inc.; http://www.microbialid.com/PDF/TechNote_101.pdf, Newark, DE.
  17. Schinsky M. F., Morey R. E., Steigerwalt A. G., Douglas M. P., Wilson R. W., Floyd M. M., Butler W. R., Daneshvar M. I., Brown-Elliott B. A. et al. ( 2004;). Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov. and Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical isolates. . Int J Syst Evol Microbiol 54:, 1653–1667. [CrossRef][PubMed]
    [Google Scholar]
  18. Shojaei H., Goodfellow M., Magee J. G., Freeman R., Gould F. K., Brignall C. G.. ( 1997;). Mycobacterium novocastrense sp. nov., a rapidly growing photochromogenic mycobacterium. . Int J Syst Bacteriol 47:, 1205–1207. [CrossRef][PubMed]
    [Google Scholar]
  19. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  20. Stahl D. A., Urbance J. W.. ( 1990;). The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. . J Bacteriol 172:, 116–124.[PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T.. ( 1993;). Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. . J Clin Microbiol 31:, 175–178.[PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  24. van Ingen J., Boeree M. J., Dekhuijzen P. N., van Soolingen D.. ( 2009;). Environmental sources of rapid growing nontuberculous mycobacteria causing disease in humans. . Clin Microbiol Infect 15:, 888–893. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043562-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043562-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error