1887

Abstract

A novel sulfate-reducing bacterium, strain S28bF, was isolated from tidal flat sediment from Tokyo Bay, Japan. Cells of strain S28bF were rod-shaped (0.5–0.6×1.7–3.8 µm), motile and Gram-stain-negative. For growth, the optimum pH was pH 6.8–7.3 and the optimum temperature was 34–42 °C. Strain S28bF used sulfate and thiosulfate as electron acceptors, but not nitrate. The G+C content of the genomic DNA was 56.6 mol%. The fatty acid profile of strain S28bF was characterized by the presence of anteiso-C and C as the major components. Phylogenetic analyses based on genes for 16S rRNA, the alpha subunit of dissimilatory sulfite reductase () and adenosine-5′-phosphosulfate reductase () revealed that the isolated strain belonged to the class . Its closest relative was DSM 7267 with a 16S rRNA gene sequence similarity of 93.3 %. Two other strains, S28OL1 and S28OL2 were also isolated from the same sediment. These strains were closely related to S28bF with 16S rRNA gene sequence similarities of 99 %, and the same physiological characteristics were shared with strain S28bF. On the basis of phylogenetic and phenotypic characterization, a novel species in a new genus, gen. nov., sp. nov., is proposed to accommodate the strains obtained in this study. The type strain is S28bF ( = NBRC 107166 = DSM 23472).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043356-0
2013-02-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/2/761.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043356-0&mimeType=html&fmt=ahah

References

  1. Bak F. , Widdel F. . ( 1986; ). Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. . Arch Microbiol 146:, 170–176. [CrossRef]
    [Google Scholar]
  2. Cord-Ruwisch R. . ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. . J Microbiol Methods 4:, 33–36. [CrossRef]
    [Google Scholar]
  3. Higashioka Y. , Kojima H. , Fukui M. . ( 2011; ). Temperature-dependent differences in community structure of bacteria involved in degradation of petroleum hydrocarbons under sulfate-reducing conditions. . J Appl Microbiol 110:, 314–322. [CrossRef] [PubMed]
    [Google Scholar]
  4. Katayama-Fujimura Y. , Komatsu Y. , Kuraishi H. , Kaneko T. . ( 1984; ). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. . Agric Biol Chem 48:, 3169–3172. [CrossRef]
    [Google Scholar]
  5. Klein M. , Friedrich M. , Roger A. J. , Hugenholtz P. , Fishbain S. , Abicht H. , Blackall L. L. , Stahl D. A. , Wagner M. . ( 2001; ). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. . J Bacteriol 183:, 6028–6035. [CrossRef] [PubMed]
    [Google Scholar]
  6. Kuever J. , Rainey F. A. , Widdel F. . ( 2005a; ). Genus VI. Desufococcus Widdel 1981, 382VP (Effective publication: Widdel 1980, 376). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 972–974. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  7. Kuever J. , Rainey F. A. , Widdel F. . ( 2005b; ). Genus X. Desufosarcina Widdel 1981, 382VP (Effective publication: Widdel 1980, 382). . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 981–984. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  8. Kumar S. , Tamura K. , Nei M. . ( 2004; ). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef] [PubMed]
    [Google Scholar]
  9. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . New York:: Wiley;.
    [Google Scholar]
  10. Meyer B. , Kuever J. . ( 2007; ). Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. . Appl Environ Microbiol 73:, 7664–7679. [CrossRef] [PubMed]
    [Google Scholar]
  11. Rütters H. , Sass H. , Cypionka H. , Rullkötter J. . ( 2001; ). Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus . . Arch Microbiol 176:, 435–442. [CrossRef] [PubMed]
    [Google Scholar]
  12. Santillano D. , Boetius A. , Ramette A. . ( 2010; ). Improved dsrA-based terminal restriction fragment length polymorphism analysis of sulfate-reducing bacteria. . Appl Environ Microbiol 76:, 5308–5311. [CrossRef] [PubMed]
    [Google Scholar]
  13. Tabuchi K. , Kojima H. , Fukui M. . ( 2010; ). Seasonal changes in organic matter mineralization in a sublittoral sediment and temperature-driven decoupling of key processes. . Microb Ecol 60:, 551–560. [CrossRef] [PubMed]
    [Google Scholar]
  14. Widdel F. , Bak F. . ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes, , 2nd edn., vol. 4, pp. 3352–3378. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . . New York:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043356-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043356-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error