1887

Abstract

A Gram-stain-negative, aerobic, heterotrophic and salt-tolerant bacterium, designated strain LL-001, was isolated from a deep subseafloor sediment in Japanese waters. Cells were non-motile rods and colonies were smooth, convex, circular and vermilion. The conditions for growth were 15–35 °C, pH 5.5–7.5 and 1–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences confirmed that strain LL-001 belonged to the genus within the family of the class . 16S rRNA gene sequence similarity between strain LL-001 and members of the genus was 94.5–98.5 %; the highest sequence similarity was with UST950701-009P. DNA–DNA relatedness between strain LL-001 and UST950701-009P was 41.5–43.6 %. The DNA G+C content of strain LL-001 was 69.3 mol%. On the basis of biochemical features and 16S rRNA gene sequence comparison, strain LL-001 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LL-001 ( = JCM 18161 = CECT 8072). The description of the genus is also emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.043174-0
2013-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/4/1390.html?itemId=/content/journal/ijsem/10.1099/ijs.0.043174-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A.. ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Hosoya S., Yokota A.. ( 2007;). Loktanella atrilutea sp. nov., isolated from seawater in Japan. . Int J Syst Evol Microbiol 57:, 1966–1969. [CrossRef][PubMed]
    [Google Scholar]
  7. Ivanova E. P., Zhukova N. V., Lysenko A. M., Gorshkova N. M., Sergeev A. F., Mikhailov V. V., Bowman J. P.. ( 2005;). Loktanella agnita sp. nov. and Loktanella rosea sp. nov., from the north-west Pacific Ocean. . Int J Syst Evol Microbiol 55:, 2203–2207. [CrossRef][PubMed]
    [Google Scholar]
  8. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  9. Kroppenstedt R. M.. ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20), pp. 173–199. Edited by Goodfellow M., Minnikin D. E... New York:: Academic Press;.
    [Google Scholar]
  10. Kumar Y., Westram R., Behrens S., Fuchs B., Glöckner F. O., Amann R., Meier H., Ludwig W.. ( 2005;). Graphical representation of ribosomal RNA probe accessibility data using arb software package. . BMC Bioinformatics 6:, 61. [CrossRef][PubMed]
    [Google Scholar]
  11. Kumar Y., Westram R., Kipfer P., Meier H., Ludwig W.. ( 2006;). Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using arb software package. . BMC Bioinformatics 7:, 240. [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester, UK:: Wiley;.
    [Google Scholar]
  13. Lau S. C., Tsoi M. M., Li X., Plakhotnikova I., Wu M., Wong P.-K., Qian P.-Y.. ( 2004;). Loktanella hongkongensis sp. nov., a novel member of the α-Proteobacteria originating from marine biofilms in Hong Kong waters. . Int J Syst Evol Microbiol 54:, 2281–2284. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee S. D.. ( 2012;). Loktanella tamlensis sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 62:, 586–590. [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  17. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Moon Y. G., Seo S. H., Lee S. D., Heo M. S.. ( 2010;). Loktanella pyoseonensis sp. nov., isolated from beach sand, and emended description of the genus Loktanella. . Int J Syst Evol Microbiol 60:, 785–789. [CrossRef][PubMed]
    [Google Scholar]
  20. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. . J Microbiol Methods 28:, 113–122. [CrossRef]
    [Google Scholar]
  21. Rautela G. S., Cowling E. B.. ( 1966;). Simple cultural test for relative cellulolytic activity of fungi. . Appl Microbiol 14:, 892–898.[PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characteristics. . In Manual of Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Swan A.. ( 1954;). The use of a bile-aesculin medium and of Maxted’s technique of Lancefield grouping in the identification of enterococci (group D streptococci). . J ClinPathol 7:, 160–163. [CrossRef][PubMed]
    [Google Scholar]
  25. Tang J. C., Taniguchi H., Chu H., Zhou Q., Nagata S.. ( 2009;). Isolation and characterization of alginate-degrading bacteria for disposal of seaweed wastes. . Lett Appl Microbiol 48:, 38–43. [CrossRef][PubMed]
    [Google Scholar]
  26. Tavaré S.. ( 1986;). Some probabilistic and statistical problems in the analysis of DNA sequences. . Lect Math Life Sci 17:, 57–86 (American Mathematical Society).
    [Google Scholar]
  27. Van Trappen S., Mergaert J., Swings J.. ( 2004;). Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. . Int J Syst Evol Microbiol 54:, 1263–1269. [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  29. Weon H.-Y., Kim B.-Y., Yoo S.-H., Kim J.-S., Kwon S.-W., Go S.-J., Stackebrandt E.. ( 2006;). Loktanella koreensis sp. nov., isolated from sea sand in Korea. . Int J Syst Evol Microbiol 56:, 2199–2202. [CrossRef][PubMed]
    [Google Scholar]
  30. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Green Publishing & Wiley-Interscience;.
    [Google Scholar]
  31. Yoon J.-H., Kang S.-J., Lee S.-Y., Oh T.-K.. ( 2007;). Loktanella maricola sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57:, 1799–1802. [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon J.-H., Jung Y.-T., Lee J.-S.. ( 2013;). Loktanella litorea sp. nov., isolated from seawater. . Int J Syst Evol Microbiol 63:, 175–180. [CrossRef][PubMed]
    [Google Scholar]
  33. Zwickl D., Holder M.. ( 2004;). Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics. . Syst Biol 53:, 877–888. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.043174-0
Loading
/content/journal/ijsem/10.1099/ijs.0.043174-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error