1887

Abstract

Seven Gram-negative bacterial strains were isolated from oozing bark canker of poplar () trees in Hungary. They showed high (>98.3 %) 16S rRNA gene sequence similarity to ; however, they differed from this species in several phenotypic characteristics. Multilocus sequence analysis based on three housekeeping genes (, and ) revealed, and DNA–DNA hybridization analysis confirmed, that this group of bacterial strains forms a distinct lineage within the species . A detailed study of phenotypic and physiological characteristics confirmed the separation of isolates from poplars from other subspecies of ; therefore, a novel subspecies, subsp. type strain NY060 ( = DSM 25466 = NCAIM B 02483), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.042911-0
2013-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/63/6/2309.html?itemId=/content/journal/ijsem/10.1099/ijs.0.042911-0&mimeType=html&fmt=ahah

References

  1. Akhurst R. J., Boemare N. E., Janssen P. H., Peel M. M., Alfredson D. A., Beard C. E.. ( 2004;). Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov.. Int J Syst Evol Microbiol 54:, 1301–1310. [CrossRef][PubMed]
    [Google Scholar]
  2. Biosca E. G., González R., López-López M. J., Soria S., Montón C., Pérez-Laorga E., López M. M.. ( 2003;). Isolation and characterization of Brenneria quercina, causal agent for bark canker and drippy nut of Quercus spp. in Spain. . Phytopathology 93:, 485–492. [CrossRef][PubMed]
    [Google Scholar]
  3. Brady C. L., Cleenwerck I., Venter S. N., Vancanneyt M., Swings J., Coutinho T. A.. ( 2008;). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). . Syst Appl Microbiol 31:, 447–460. [CrossRef][PubMed]
    [Google Scholar]
  4. Brady C. L., Cleenwerck I., Denman S., Venter S. N., Rodríguez-Palenzuela P., Coutinho T. A., De Vos P.. ( 2012;). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. . Int J Syst Evol Microbiol 62:, 1592–1602. [CrossRef][PubMed]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  6. Denman S., Brady C. L., Kirk S., Cleenwerck I., Venter S., Coutinho T. A., De Vos P.. ( 2012;). Brenneria goodwinii sp. nov., associated with acute oak decline in the UK. . Int J Syst Evol Microbiol 62:, 2451–2456. [CrossRef][PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid – deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: An approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Goris J., Suzuki K.-I., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  10. Hauben L., Moore E. R., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J.. ( 1998;). Phylogenetic position of phytopathogens within the Enterobacteriaceae. . Syst Appl Microbiol 21:, 384–397. [CrossRef][PubMed]
    [Google Scholar]
  11. Hildebrand D. C., Schroth M. N.. ( 1967;). A new species of Erwinia causing the drippy nut disease of live oaks. . Phytopathology 57:, 250–253.
    [Google Scholar]
  12. Kwon S. W., Go S. J., Kang H. W., Ryu J. C., Jo J. K.. ( 1997;). Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences. . Int J Syst Bacteriol 47:, 1061–1067. [CrossRef][PubMed]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  14. Moretti C., Hosni T., Vandemeulebroecke K., Brady C., De Vos P., Buonaurio R., Cleenwerck I.. ( 2011;). Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. . Int J Syst Evol Microbiol 61:, 2745–2752. [CrossRef][PubMed]
    [Google Scholar]
  15. Spröer C., Mendrock U., Swiderski J., Lang E., Stackebrandt E.. ( 1999;). The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. . Int J Syst Bacteriol 49:, 1433–1438. [CrossRef][PubMed]
    [Google Scholar]
  16. Surico G., Mugnai L., Pastorelli R., Giovannetti L., Stead D. E.. ( 1996;). Erwinia alni, a new species causing bark canker of alder (Alnus Miller) species. . Int J Syst Bacteriol 46:, 720–726. [CrossRef]
    [Google Scholar]
  17. Tailliez P., Pagès S., Ginibre N., Boemare N. E.. ( 2006;). New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. . Int J Syst Evol Microbiol 56:, 2805–2818. [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  21. Wilson K.. ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 241–245. Edited by Ausubel F. M., Brent R., Kimston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York, N. Y.:: John Wiley & Sons, Inc;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.042911-0
Loading
/content/journal/ijsem/10.1099/ijs.0.042911-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error